[1]
T.E. Quested, A.L. Greer, Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification, J. Acta Mater. 53 (2005) 4643-4653.
DOI: 10.1016/j.actamat.2005.06.018
Google Scholar
[2]
T. F. Ma, Z. Y. Chen, Z. R. Nie, H. Huang, Microstructure of Al-Ti-B-Er refiner and its grain refining performance, J. J. Rare Earths. 31 (2013) 622-627.
DOI: 10.1016/s1002-0721(12)60331-7
Google Scholar
[3]
R. G. Guan, D. Tie, A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects, J. Acta Metall. Sin. (Engl. Lett.). 05 (2017) 409-432.
DOI: 10.1007/s40195-017-0565-8
Google Scholar
[4]
Y. Wang, C. M. Fang, L. Zhou, T. Hashimoto, Z. Fan, Mechanism for Zr poisoning of Al-Ti-B based grain refiners, J. Acta Mater. 164 (2019) 428-439.
DOI: 10.1016/j.actamat.2018.10.056
Google Scholar
[5]
A. Arjuna Rao, B. S. Murty, M. Chakraborty, Role of zirconium and impurities in grain refinement of aluminium lNith AI-Ti-B, J. Mater Sci Technol. 13 (1997) 769–777.
DOI: 10.1179/mst.1997.13.9.769
Google Scholar
[6]
M. A. Doheim, A. M. Omran, A. Abdel-Gwad, G. A. Sayed, Evaluation of Al-Ti-C Master Alloys as Grain Refiner for Aluminum and Its Alloys, J. Metall Mater Trans A. 42 (2011) 2862–2867.
DOI: 10.1007/s11661-011-0689-9
Google Scholar
[7]
Abinash, BanerjiWinfried, Reif, Development of Al-Ti-C grain refiners containing TiC, J. Metall. Trans. A. 17 (1986) 2127-2137.
DOI: 10.1007/bf02645911
Google Scholar
[8]
X. Jian, T.T. Meek, Q. Han Refinement of eutectic silicon phaseo aluminum A356 alloy using high-intensity ultrasonic vibration, J. Scr. Mater. 54 (2006) 893-896.
DOI: 10.1016/j.scriptamat.2005.11.004
Google Scholar
[9]
X. R. Chen, Y. H. Jia, Q. Y. Liao, W. T. Jia, F. X. Yu, The simultaneous application of variable frequency ultrasonic and low frequency electromagnetic fields in semi continuous casting of AZ80magnesium alloy, J. J. Alloys Compd. 774 (2019) 710-720.
DOI: 10.1016/j.jallcom.2018.09.300
Google Scholar
[10]
C. Vanhille, C. Campos-Pozuelo, Acoustic cavitation mechanism: a nonlinear model, J. Ultrason. Sonochem. 19 (2012) 217-220.
DOI: 10.1016/j.ultsonch.2011.06.019
Google Scholar
[11]
J. L. Laborde, A. Hita, A. Gerard, Fluid dynamics phenomena induced by power ultrasound, J. Ultrason. 38 (2000) 297-300.
DOI: 10.1016/s0041-624x(99)00124-9
Google Scholar
[12]
H. Puga, J. Barbosa, J. C. Teixeira, M. Prokic, A new approach to ultrasonic degassing to improve the mechanical properties of aluminum alloys, J. J. Mater. Eng. Perform. 23 (2014) 3736-3744.
DOI: 10.1007/s11665-014-1133-2
Google Scholar
[13]
X. Yang, N. Laurentiu, The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process, J. Ultrason. 83 (2018) 94-102.
DOI: 10.1016/j.ultras.2017.06.023
Google Scholar
[14]
P.S. Mohanty, J.E. Gruzleski, Mechanism of grain refinement in aluminium, J. Acta Metall. Mater. 43 (1995) 2001-2012.
DOI: 10.1016/0956-7151(94)00405-7
Google Scholar