[1]
Ma X, Matthews A. Investigation of abradable seal coating performance using scratch testing. Surface and Coatings Technology. 2007; 202(4): 1214.
DOI: 10.1016/j.surfcoat.2007.07.076
Google Scholar
[2]
Yi M, He J, Huang B, Zhou H. Friction and wear behaviour and abradability of abradable seal coating. Wear. 1999; 231(1): 47.
DOI: 10.1016/s0043-1648(99)00093-9
Google Scholar
[3]
Taylor T A, Thompson B W, Aton W. High speed rub wear mechanism in IN-718 vs. NiCrAl–Bentonite. Surface and Coatings Technology. 2007; 202(4): 698.
DOI: 10.1016/j.surfcoat.2007.05.054
Google Scholar
[4]
Faraoun H I, Seichepine J L, Coddet C, et al. Modelling route for abradable coatings. Surface and Coatings Technology. 2006; 200(22-23): 6578.
DOI: 10.1016/j.surfcoat.2005.11.105
Google Scholar
[5]
Burnett P J, Rickerby D S. The mechanical properties of wear-resistant coatings I: Modelling of hardness behaviour[J]. Thin Solid Films, 1987, 148(1):41-50.
DOI: 10.1016/0040-6090(87)90119-2
Google Scholar
[6]
Torigoe, Taiji, Oguma, et al. Fundamental Coating Development Study to Improve the Isothermal Oxidation Resistance and Thermal Cycle Durability of Thermal Barrier Coatings[C]// Materials Science Forum. (2006).
Google Scholar
[7]
Taylor M P, Evans H E. Formation of diffusion cells in LPPS MCrAlY coatings[J]. High Temperature Technology, 2003, 20(4):461-465.
DOI: 10.1179/mht.2003.053
Google Scholar
[8]
Johnston R. Mechanical characterisation of AlSi-hBN, NiCrAl-Bentonite, and NiCrAl-Bentonite-hBN freestanding abradable coatings. Surface and Coatings Technology. 2011; 205(10): 3268.
DOI: 10.1016/j.surfcoat.2010.11.044
Google Scholar
[9]
Johnston R E, W J. Freestanding abradable coating manufacture and tensile test development. Surface and Coatings Technology. 2007; 202(4): 725.
DOI: 10.1016/j.surfcoat.2007.05.082
Google Scholar
[10]
Tirupataiah Y, Sundararajan G. A dynamic indentation technique for the characterization of the high strain rate plastic flow behaviour of ductile metals and alloys[J]. Journal of the Mechanics & Physics of Solids, 1991, 39(2):243-271.
DOI: 10.1016/0022-5096(91)90005-9
Google Scholar
[11]
Roy M. Dynamic hardness of detonation sprayed WC-Co coatings[J]. Journal of Thermal Spray Technology, 2002, 11(3):393-399.
DOI: 10.1361/105996302770348790
Google Scholar
[12]
Almasri A H, Voyiadjis G Z. Effect of Strain Rate on the Dynamic Hardness in Metals[J]. Journal of Engineering Materials & Technology, 2007, 129(4):505-512.
DOI: 10.1115/1.2744430
Google Scholar
[13]
Rudnitskii V A. Effect of the parameters of dynamic loading on the ratio of static and dynamic hardness[J]. Strength of Materials, 1990, 22(9):1341-1344.
DOI: 10.1007/bf00770980
Google Scholar
[14]
Wang B P, Wang L, Xue Y F, et al. Dynamic indentation response of porous SiC/Ti-based metallic glass composite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12):3154-3160.
DOI: 10.1016/s1003-6326(16)64447-3
Google Scholar