[1]
W. Hanpongpun, Investigation of the use of Limestone Calcined Clay Cement (LC3) applied to Thailand, EPFL, (2019).
Google Scholar
[2]
T. Sun, K. Ge, G. Wang, H. Geng, Z. Shui, S. Cheng, M. Chen, Comparing pozzolanic activity from thermal-activated water-washed and coal-series kaolin in Portland cement mortar, Construction and Building Materials, 227(2019)117092.
DOI: 10.1016/j.conbuildmat.2019.117092
Google Scholar
[3]
A.F. Fernando Martirena, Calcined Clays for Sustainable Concrete, Switzerland, (2018).
Google Scholar
[4]
G. Medjigbodo, E. Rozière, K. Charrier, L. Izoret, A. Loukili, Hydration, shrinkage, and durability of ternary binders containing Portland cement, limestone filler and metakaolin, Construction and Building Materials, 183(2018)114-126.
DOI: 10.1016/j.conbuildmat.2018.06.138
Google Scholar
[5]
A.M. Ramezanianpour, R.D. Hooton, A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs, Cement and Concrete Composites, 51(2014)1-13.
DOI: 10.1016/j.cemconcomp.2014.03.006
Google Scholar
[6]
K. De Weerdt, K.O. Kjellsen, E. Sellevold, H. Justnes, Synergy between fly ash and limestone powder in ternary cements, Cement and Concrete Composites, 33(2011)30-38.
DOI: 10.1016/j.cemconcomp.2010.09.006
Google Scholar
[7]
D.P. Bentz, C.F. Ferraris, S.Z. Jones, D. Lootens, F. Zunino, Limestone and Silica Powder Replacements for Cement: Early-Age Performance, Cement & concrete composites, 78(2017)43-56.
DOI: 10.1016/j.cemconcomp.2017.01.001
Google Scholar
[8]
P. Thongsanitgarn, W. Wongkeo, A. Chaipanich. Hydration and Compressive Strength of Blended Cement Containing Fly Ash and Limestone as Cement Replacement, Journal of Materials in Civil Engineering, 26(2014)04014088.
DOI: 10.1061/(asce)mt.1943-5533.0001002
Google Scholar
[9]
D. Zhang, B. Jaworska, H. Zhu, K. Dahlquist, V.C. Li, Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3), Cement and Concrete Composites, 114(2020)103766.
DOI: 10.1016/j.cemconcomp.2020.103766
Google Scholar
[10]
H. Du, S.D. Pang, High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute, Construction and Building Materials, 264(2020)120152.
DOI: 10.1016/j.conbuildmat.2020.120152
Google Scholar
[11]
D. Wang, C. Shi, N. Farzadnia, Z. Shi, H. Jia, Z. Ou, A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures, Construction and Building Materials, 181(2018)659-672.
DOI: 10.1016/j.conbuildmat.2018.06.075
Google Scholar
[12]
W.S. Sabir B.B, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review, Cement & concrete composites, 23 (2001) 441-454.
DOI: 10.1016/s0958-9465(00)00092-5
Google Scholar
[13]
S.A.N. Tironi A, Irassar E F. Blended Cements with Limestone Filler and Kaolinitic Calcined Clay: Filler and Pozzolanic Effects, Journal of Materials in Civil Engineering, 29(2017).
DOI: 10.1061/(asce)mt.1943-5533.0001965
Google Scholar
[14]
K. Scrivener, F. Avet, H. Maraghechi, F. Zunino, J. Ston, W. Hanpongpun, A. Favier, Impacting factors and properties of limestone calcined clay cements (LC3), Green Materials, 7(2019)3-14.
DOI: 10.1680/jgrma.18.00029
Google Scholar
[15]
J.J. Chen, A.K.H. Kwan, Y. Jiang. Adding limestone fines as cement paste replacement to reduce water permeability and sorptivity of concrete, Construction and Building Materials, 56(2014)87-93.
DOI: 10.1016/j.conbuildmat.2014.01.066
Google Scholar
[16]
Y. Wang, Z. Jin, S. Liu, L. Yang, S. Luo, Physical filling effect of aggregate micro fines in cement concrete, Construction and Building Materials, 41(2013)812-814.
DOI: 10.1016/j.conbuildmat.2012.12.037
Google Scholar
[17]
D. Wang, C. Shi, N. Farzadnia, H. Jia, R. Zeng, Y. Wu, L. Lao, A quantitative study on physical and chemical effects of limestone powder on properties of cement pastes, Construction and Building Materials, 204(2019)58-69.
DOI: 10.1016/j.conbuildmat.2019.01.154
Google Scholar
[18]
A.A. Elgalhud, R.K. Dhir, G. Ghataora, Limestone addition effects on concrete porosity, Cement and Concrete Composites, 72(2016)222-234.
DOI: 10.1016/j.cemconcomp.2016.06.006
Google Scholar
[19]
R.V.F. Bonavetti V.L, Irassar E.F. Studies on the carboaluminate formation in limestone filler-blended cements, Cement & Concrete Research, 31(2001)853-859.
DOI: 10.1016/s0008-8846(01)00491-4
Google Scholar
[20]
B. Lothenbach, G. Le Saout, E. Gallucci, K. Scrivener, Influence of limestone on the hydration of Portland cements, Cement and Concrete Research, 38(2008)848-860.
DOI: 10.1016/j.cemconres.2008.01.002
Google Scholar
[21]
G.D. Moon, S. Oh, S.H. Jung, Y.C. Choi, Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete, Construction and Building Materials, 135(2017)129-136.
DOI: 10.1016/j.conbuildmat.2016.12.189
Google Scholar
[22]
M. Zajac, A. Rossberg, G. Le Saout, B. Lothenbach, Influence of limestone and anhydrite on the hydration of Portland cements, Cement and Concrete Composites, 46(2014)99-108.
DOI: 10.1016/j.cemconcomp.2013.11.007
Google Scholar
[23]
F. Avet, K. Scrivener, Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3), Cement and Concrete Research, 107(2018)124-135.
DOI: 10.1016/j.cemconres.2018.02.016
Google Scholar
[24]
M. Antoni, J. Rossen, F. Martirena, K. Scrivener, Cement substitution by a combination of metakaolin and limestone, Cement and Concrete Research, 42(2012)1579-1589.
DOI: 10.1016/j.cemconres.2012.09.006
Google Scholar
[25]
A. Souri, H. Kazemi-Kamyab, R. Snellings, R. Naghizadeh, F. Golestani-Fard, K. Scrivener, Pozzolanic activity of mechanochemically and thermally activated kaolins in cement, Cement and Concrete Research, 77(2015)47-59.
DOI: 10.1016/j.cemconres.2015.04.017
Google Scholar
[26]
A. Alujas, R. Fernández, R. Quintana, K.L. Scrivener, F. Martirena, Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, Applied Clay Science, 108(2015)94-101.
DOI: 10.1016/j.clay.2015.01.028
Google Scholar
[27]
M. Antoni, Investigation of cement substitution by blends of calcined clays and limestone, in, EPFL, (2013).
Google Scholar
[28]
A.A. Amer, S. El-Hoseny, Properties and performance of metakaolin pozzolanic cement pastes, Journal of Thermal Analysis and Calorimetry, 129(2017)33-44.
DOI: 10.1007/s10973-017-6087-9
Google Scholar
[29]
M. Cyr, M. Trinh, B. Husson, G. Casaux-Ginestet, Effect of cement type on metakaolin efficiency, Cement and Concrete Research, 64(2014)63-72.
DOI: 10.1016/j.cemconres.2014.06.007
Google Scholar
[30]
Y. Liu, S. Lei, M. Lin, Z. Xia, Z. Pei, B. Li, Influence of calcined coal-series kaolin fineness on properties of cement paste and mortar, Construction and Building Materials, 171(2018)558-565.
DOI: 10.1016/j.conbuildmat.2018.03.117
Google Scholar
[31]
F.H. Avet, Investigation of the grade of calcined clays used as clinker substitute in Limestone Calcined Clay Cement (LC3), EPFL, (2017).
DOI: 10.1007/978-94-024-1207-9_6
Google Scholar
[32]
J. Tang, S. Wei, W. Li, S. Ma, P. Ji, X. Shen, Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement, Construction and Building Materials, 223(2019)177-184.
DOI: 10.1016/j.conbuildmat.2019.06.059
Google Scholar
[33]
T. Matschei, B. Lothenbach, F.P. Glasser, The role of calcium carbonate in cement hydration, Cement and Concrete Research, 37(2007)551-558.
DOI: 10.1016/j.cemconres.2006.10.013
Google Scholar
[34]
F. Avet, E. Boehm-Courjault, K. Scrivener, Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3), Cement and Concrete Research, 115(2019)70-79.
DOI: 10.1016/j.cemconres.2018.10.011
Google Scholar
[35]
W. Huang, H. Kazemi-Kamyab, W. Sun, K. Scrivener, Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC, Materials & Design, 121(2017)36-46.
DOI: 10.1016/j.matdes.2017.02.052
Google Scholar