Synthesis of Fly Ash-Based Zeolite and its Research Progress in Wastewater Treatment

Article Preview

Abstract:

Fly ash is the most common solid waste in the industry, and its high value-added utilization has become a hot issue of study. Carrying out the green synthesis route of zeolite as the raw material of fly ash has become an extremely important scientific significance and practical value. In this paper, the research progress of fly ash-based zeolite was introduced from three aspects, including fly ash activation method, fly ash-based zeolite synthesis method and fly ash-based zeolite in the wastewater treatment sector. The relevant applications of fly ash-based zeolite as an adsorbent material in the treatment of wastewater pollution were summarized, and the development trend has prospected.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

277-287

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.H. Deng, X.E. Yang, X Dai, et al, Heavy metal pollution risk assessments and their transportation in sediment and overlay water for the typical Chinese reservoirs, Ecol. Indic. 2020, doi:https://doi.org/10.1016/j.ecolind.2020.106166.

DOI: 10.1016/j.ecolind.2020.106166

Google Scholar

[2] L. Fang, L. Li, Z. Qu, et al, A novel method for the sequential removal and separation of multiple heavy metals from wastewater, J. Hazard. Mater. 342(2018)617-624.

DOI: 10.1016/j.jhazmat.2017.08.072

Google Scholar

[3] V. Bharti, B. Chandrajit, Surface modification of one-dimensional carbon nanotubes: a review for the management of heavy metals in wastewater, Environ. Technol. Inno. 2020, doi:https://doi.org/10.1016/j.eti.2019.100596.

Google Scholar

[4] L.Z. Qiao, S.S. Li, Y.L. Li, et al, Fabrication of superporous cellulose beads via enhanced inner cross-linked linkages for high efficient adsorption of heavy metal ions, J. Clean. Prod. 2020, doi:https://doi.org/10.1016/j.jclepro.2020.120017.

DOI: 10.1016/j.jclepro.2020.120017

Google Scholar

[5] P.Y. He, Y.J. Zhang, H Chen, et al, Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium(VI) separation from aqueous solution, J. Hazard. Mater. 2020, doi:https://doi.org/10.1016/j.jhazmat.2020.122359.

DOI: 10.1016/j.jhazmat.2020.122359

Google Scholar

[6] Y.N. Zhang, Y.G. Chen, W Kang, et al, Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment, J. Clean. Prod. 2020, doi: https://doi.org/10.1016/ j.jclepro.2020.120736.

DOI: 10.1016/j.jclepro.2020.120736

Google Scholar

[7] Y. Li, H.M. Sun, Y.H. Wang, et al, Green routes for synthesis of zeolites, Prog. Chem. 27(2015)503-510.

Google Scholar

[8] X.J. Meng, F.S. Xiao, Green routes for synthesis of zeolites, Chem. Rev. 114(2014)1521-1543.

Google Scholar

[9] N. Toniolo, A.R. Boccaccini, Fly ash-based geopolymers containing added silicate waste, a review. Ceram. Int. 43(2017)14545-14551.

DOI: 10.1016/j.ceramint.2017.07.221

Google Scholar

[10] M. Sandanayake, C. Gunasekara, D. Law, et al, Sustainable criterion selection framework for green building materials – an optimisation based study of fly-ash geopolymer concrete, Sustain. Mater. Techno. 2020, doi: https://doi.org/10.1016/j.susmat.2020.e00178.

DOI: 10.1016/j.susmat.2020.e00178

Google Scholar

[11] X.G. Jiang , L. Long, X.L. Zhao, et al, Application of solidified materials in disposal of mswi fly ash, Chem. Ind. Eng. Prog. 38(2019)216-225.

Google Scholar

[12] A.D. Rossi, L. Simão, M.J. Ribeiro, et al, In-situ synthesis of zeolites by polymerization of biomass fly ash and metakaolin, Mater. Lett. 236(2019)644-648.

DOI: 10.1016/j.matlet.2018.11.016

Google Scholar

[13] S.S. Bukhari, J. Benin, H. Kazemian, et al, Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review, Fuel, 140(2015)250-266.

DOI: 10.1016/j.fuel.2014.09.077

Google Scholar

[14] G. Mucsi, Mechanical activation of power station fly ash by grinding–a review, J. Silica - Based. Compos. Mater. 68(2016)56-61.

DOI: 10.14382/epitoanyag-jsbcm.2016.10

Google Scholar

[15] Y. Wu, Y.C. Zhai, Z. Yin, et al, Study on mechanical grinding activation fly ash and acid leaching of aluminum oxide, Min. Metall. Eng. 29(2009)71-73+77.

Google Scholar

[16] Q.Y. Chen, C.Y. Yan, L Zhang, et al, Effect on physical properties of fly ash by mechanical grinding, Coal. Technol. ,33(2014)342-344.

Google Scholar

[17] Y. Liu, Y. Liu, Y.M. Zhou, et al, Mechanical grinding time affected to performances of reject fly ash-based backfill binding material, Coal Sci. Technol. 45(2017)221-225.

Google Scholar

[18] D.K. Rajak, C. Guria, R. Ghosh, et al, Alkali assisted dissolution of fly ash: a shrinking core model under finite solution volume condition, Int. J. Miner. Process., 155(2016)106-117.

DOI: 10.1016/j.minpro.2016.08.007

Google Scholar

[19] L.J. Xu, Y.W. Wang, D. Chen, et al, Research progress of the extraction process of alumina by acid from fly ash, Inorg. Chem. Ind. 51(2019)10-13.

Google Scholar

[20] Y. Yang, Z.Y. Liu, Z.Z. Liu, et al, Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash, J. Environ. Manage. 238(2019)144-152.

DOI: 10.1016/j.jenvman.2019.02.098

Google Scholar

[21] P. Trtik, M. Beat, P. Lura, A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments, Cement Concrete Comp. 31(2009)705-714.

DOI: 10.1016/j.cemconcomp.2009.07.001

Google Scholar

[22] D. Lita, T. Grandprix, N. Suprihanto, et al, Structural alteration within fly ash-based geopolymers governing the adsorption of Cu2+ from aqueous environment: effect of alkali activation, J. Hazard. Mater. 377(2019)305-314.

DOI: 10.1016/j.jhazmat.2019.05.086

Google Scholar

[23] L. Yang, X. Qian, P. Yuan, et al, Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3, J. Clean. Prod. 212(2019)250-260.

DOI: 10.1016/j.jclepro.2018.11.259

Google Scholar

[24] Z. Wang, Z.L. Huang, P.G. Wang, et al, Study on process parameters for activating power plant fly ash, Appl. Chem. Ind. 45(2016)1100-1102+1106.

Google Scholar

[25] Y.J. Hu, Z.G. Wang, S.H. Fu, et al, Mineral change law of coal fly ash in the process of roasting activation, Clean Coal Technol. 24(2018)55-59.

Google Scholar

[26] H. Holler, U. Wirsching, Zeolite formation from fly ash, Forschr Miner. 63(1985)21-27.

Google Scholar

[27] B. Claudia, State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues, Prog. Energ. Combust. 65(2018)109-135.

DOI: 10.1016/j.pecs.2017.10.004

Google Scholar

[28] S. Sivalingam, S. Sen, Rapid ultrasound assisted hydrothermal synthesis of highly pure nanozeolite X from fly ash for efficient treatment of industrial effluent, Chemosphere. 210(2018)816-823.

DOI: 10.1016/j.chemosphere.2018.07.091

Google Scholar

[29] G.D. Wang, Y. Liu, L. Wang, et al, Hydrothermal synthesis of zeolite from coal fly ash and its characterization, Bull. Chin. Ceram. Soc. 37(2018)2089-2093.

Google Scholar

[30] L. Wang, G.D. Wang, X.L. Li, et al, Dissolution of silicon and aluminum from fly ash and directional synthesis of X-type zeolite, Chin. J. Environ. Eng. 12(2018)618-624.

Google Scholar

[31] Z.W. Zhang, X.L. Jiang, Q. Xie, et al, Dissolution of silicon and aluminum from fly ash and directional synthesis of x-type zeolite, Bull. Chin. Ceram. Soc. 34(2015)3095-3101.

Google Scholar

[32] A. Iqbal, H. Sattar, R. Haider, et al, Synthesis and characterization of pure phase zeolite 4A from coal fly ash, J. Clean. Prod. 219(2019)258-267.

DOI: 10.1016/j.jclepro.2019.02.066

Google Scholar

[33] R.R. Xu, Chemistry zeolites and porous materials, First ed, Science Press, Bei Jing, (2004).

Google Scholar

[34] N. Shigemoto, H. Hayashi, K. Miyaura, Selective formation of Na–X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction, J. Mater. Sci. 28(1993)4781-4786.

DOI: 10.1007/bf00414272

Google Scholar

[35] D.X. Wu, L. Liu, Y.J. Jia, et al, Synthesis of a-zeolite from coal fly ash by alkali fusion-hydrothermal process and its adsorption research, Bull. Chin. Ceram. Soc. 38(2019)1873-1877.

Google Scholar

[36] X.Y. Ren, S.J. Liu, R.Y. Qu, et al, Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption, Micropor. Mesopor. Mater. 2020, 295. doi: https://doi.org/10.1016/j.micromeso.2019.109940.

DOI: 10.1016/j.micromeso.2019.109940

Google Scholar

[37] R. Jain, J. Rimer, Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology, Micropor. Mesopor. Mater. 2020, 300. https://doi.org/10.1016/j.micromeso.2020.110174.

DOI: 10.1016/j.micromeso.2020.110174

Google Scholar

[38] Y.Y. Yue, X.Y. Guo, T. Liu, et al, Template free synthesis of hierarchical porous zeolite Beta with natural kaolin clay as alumina source, Micropor. Mesopor. Mater. 2019, 293. doi: https://doi.org/10.1016/j.micromeso.2019.109772.

DOI: 10.1016/j.micromeso.2019.109772

Google Scholar

[39] J.X. Li, C.H. Shi, H.F. Zhang, et al, Silicalite-1 zeolite membrane: synthesis by seed method and application in organics removal, Chemosphere. 218(2019)984-991.

DOI: 10.1016/j.chemosphere.2018.11.215

Google Scholar

[40] X.S. Zhao , G.Q. Lu, H.Y. Zhu, Effects of ageing and seeding on the formation of zeolite Y from coal fly ash, J. Porous Mater. 4(1997)245-251.

Google Scholar

[41] X.Q. Zeng, Y.P. Ye, M.W. Wang, et al, Synthesis of pure zeolites by dissolved silicon and aluminium from fly ash by stages, Bull. Chin. Ceram. Soc. 26(2007)19-24.

Google Scholar

[42] A.L. Figueiredo, A.S. Araujo, M. Linares, et al. Catalytic cracking of LDPE over nanocrystalline HZSM-5 zeolite prepared by seed-assisted synthesis from an organic-template-free system, J. Anal. Appl. Pyrol. 117(2016)132-140.

DOI: 10.1016/j.jaap.2015.12.005

Google Scholar

[43] K.P. Pritam, K.S. Shishir, Innovative utilization of fly ash in concrete tiles for sustainable construction, Mater. Today. Proc. 2020. doi: https://doi.org/10.1016/j.matpr.2020.02.971.

Google Scholar

[44] L.J. Ma, L.N. Han, S. Chen, et al, Rapid synthesis of magnetic zeolite materials from fly ash and iron-containing wastes using supercritical water for elemental mercury removal from flue gas, Fuel. Process. Technol. 189(2019)39-48.

DOI: 10.1016/j.fuproc.2019.02.021

Google Scholar

[45] L.J. Ma, L. Zhang, H.L. Gao, et al, Preparation of zeolite molecular sieve with fly ash and treatment of wastewater containing copper, Bull. Chin. Ceram. Soc. 38(2019)4037-4041.

Google Scholar

[46] X.Y. Cui, S.W. Chen, X.L. Yan , et al, Removal of Ni2+ from waste water by Na-X zeolite synthesized from coal fly ash, J. Fuel. Chem. Technol. 37(2009)752-756.

Google Scholar

[47] X.P. He, B. Yao, Y. Xia, et al, Coal fly ash derived zeolite for highly efficient removal of Ni2+ inwaste water, Powder Technol. 367(2020)40-46.

DOI: 10.1016/j.powtec.2019.11.037

Google Scholar

[48] S. Sivalingam, T. Kella, M. Maharana, et al, Efficient sono-sorptive elimination of methylene blue by fly ash-derived nano-zeolite X: process optimization, isotherm and kinetic studies, J. Clean. Prod. 208(2019)1241-1254.

DOI: 10.1016/j.jclepro.2018.10.200

Google Scholar

[49] T. Bo, M. Ji, The advance of control techniques for internal pollution, Ecol. Environ. Sci. 26(2017)514-521.

Google Scholar

[50] H.R. Chen, X.X. Zhou, J.L. Shi, Research progress on hierarchically porous zeolites: dtructural control, synthesis and catalytic applications, J. Inorg. Mater. 33(2018)113-128.

Google Scholar

[51] T.T. Zhao, Y.Q. Wang, C. Sun, et al, Direct synthesis of hierarchical binder-free ZSM-5 and catalytic properties for MTP, Micropor. Mesopor. Mater. 292(2020), doi: https://doi.org/10.1016/j.micromeso.2019.109731.

DOI: 10.1016/j.micromeso.2019.109731

Google Scholar