[1]
M.H. Deng, X.E. Yang, X Dai, et al, Heavy metal pollution risk assessments and their transportation in sediment and overlay water for the typical Chinese reservoirs, Ecol. Indic. 2020, doi:https://doi.org/10.1016/j.ecolind.2020.106166.
DOI: 10.1016/j.ecolind.2020.106166
Google Scholar
[2]
L. Fang, L. Li, Z. Qu, et al, A novel method for the sequential removal and separation of multiple heavy metals from wastewater, J. Hazard. Mater. 342(2018)617-624.
DOI: 10.1016/j.jhazmat.2017.08.072
Google Scholar
[3]
V. Bharti, B. Chandrajit, Surface modification of one-dimensional carbon nanotubes: a review for the management of heavy metals in wastewater, Environ. Technol. Inno. 2020, doi:https://doi.org/10.1016/j.eti.2019.100596.
Google Scholar
[4]
L.Z. Qiao, S.S. Li, Y.L. Li, et al, Fabrication of superporous cellulose beads via enhanced inner cross-linked linkages for high efficient adsorption of heavy metal ions, J. Clean. Prod. 2020, doi:https://doi.org/10.1016/j.jclepro.2020.120017.
DOI: 10.1016/j.jclepro.2020.120017
Google Scholar
[5]
P.Y. He, Y.J. Zhang, H Chen, et al, Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium(VI) separation from aqueous solution, J. Hazard. Mater. 2020, doi:https://doi.org/10.1016/j.jhazmat.2020.122359.
DOI: 10.1016/j.jhazmat.2020.122359
Google Scholar
[6]
Y.N. Zhang, Y.G. Chen, W Kang, et al, Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment, J. Clean. Prod. 2020, doi: https://doi.org/10.1016/ j.jclepro.2020.120736.
DOI: 10.1016/j.jclepro.2020.120736
Google Scholar
[7]
Y. Li, H.M. Sun, Y.H. Wang, et al, Green routes for synthesis of zeolites, Prog. Chem. 27(2015)503-510.
Google Scholar
[8]
X.J. Meng, F.S. Xiao, Green routes for synthesis of zeolites, Chem. Rev. 114(2014)1521-1543.
Google Scholar
[9]
N. Toniolo, A.R. Boccaccini, Fly ash-based geopolymers containing added silicate waste, a review. Ceram. Int. 43(2017)14545-14551.
DOI: 10.1016/j.ceramint.2017.07.221
Google Scholar
[10]
M. Sandanayake, C. Gunasekara, D. Law, et al, Sustainable criterion selection framework for green building materials – an optimisation based study of fly-ash geopolymer concrete, Sustain. Mater. Techno. 2020, doi: https://doi.org/10.1016/j.susmat.2020.e00178.
DOI: 10.1016/j.susmat.2020.e00178
Google Scholar
[11]
X.G. Jiang , L. Long, X.L. Zhao, et al, Application of solidified materials in disposal of mswi fly ash, Chem. Ind. Eng. Prog. 38(2019)216-225.
Google Scholar
[12]
A.D. Rossi, L. Simão, M.J. Ribeiro, et al, In-situ synthesis of zeolites by polymerization of biomass fly ash and metakaolin, Mater. Lett. 236(2019)644-648.
DOI: 10.1016/j.matlet.2018.11.016
Google Scholar
[13]
S.S. Bukhari, J. Benin, H. Kazemian, et al, Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review, Fuel, 140(2015)250-266.
DOI: 10.1016/j.fuel.2014.09.077
Google Scholar
[14]
G. Mucsi, Mechanical activation of power station fly ash by grinding–a review, J. Silica - Based. Compos. Mater. 68(2016)56-61.
DOI: 10.14382/epitoanyag-jsbcm.2016.10
Google Scholar
[15]
Y. Wu, Y.C. Zhai, Z. Yin, et al, Study on mechanical grinding activation fly ash and acid leaching of aluminum oxide, Min. Metall. Eng. 29(2009)71-73+77.
Google Scholar
[16]
Q.Y. Chen, C.Y. Yan, L Zhang, et al, Effect on physical properties of fly ash by mechanical grinding, Coal. Technol. ,33(2014)342-344.
Google Scholar
[17]
Y. Liu, Y. Liu, Y.M. Zhou, et al, Mechanical grinding time affected to performances of reject fly ash-based backfill binding material, Coal Sci. Technol. 45(2017)221-225.
Google Scholar
[18]
D.K. Rajak, C. Guria, R. Ghosh, et al, Alkali assisted dissolution of fly ash: a shrinking core model under finite solution volume condition, Int. J. Miner. Process., 155(2016)106-117.
DOI: 10.1016/j.minpro.2016.08.007
Google Scholar
[19]
L.J. Xu, Y.W. Wang, D. Chen, et al, Research progress of the extraction process of alumina by acid from fly ash, Inorg. Chem. Ind. 51(2019)10-13.
Google Scholar
[20]
Y. Yang, Z.Y. Liu, Z.Z. Liu, et al, Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash, J. Environ. Manage. 238(2019)144-152.
DOI: 10.1016/j.jenvman.2019.02.098
Google Scholar
[21]
P. Trtik, M. Beat, P. Lura, A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments, Cement Concrete Comp. 31(2009)705-714.
DOI: 10.1016/j.cemconcomp.2009.07.001
Google Scholar
[22]
D. Lita, T. Grandprix, N. Suprihanto, et al, Structural alteration within fly ash-based geopolymers governing the adsorption of Cu2+ from aqueous environment: effect of alkali activation, J. Hazard. Mater. 377(2019)305-314.
DOI: 10.1016/j.jhazmat.2019.05.086
Google Scholar
[23]
L. Yang, X. Qian, P. Yuan, et al, Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3, J. Clean. Prod. 212(2019)250-260.
DOI: 10.1016/j.jclepro.2018.11.259
Google Scholar
[24]
Z. Wang, Z.L. Huang, P.G. Wang, et al, Study on process parameters for activating power plant fly ash, Appl. Chem. Ind. 45(2016)1100-1102+1106.
Google Scholar
[25]
Y.J. Hu, Z.G. Wang, S.H. Fu, et al, Mineral change law of coal fly ash in the process of roasting activation, Clean Coal Technol. 24(2018)55-59.
Google Scholar
[26]
H. Holler, U. Wirsching, Zeolite formation from fly ash, Forschr Miner. 63(1985)21-27.
Google Scholar
[27]
B. Claudia, State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues, Prog. Energ. Combust. 65(2018)109-135.
DOI: 10.1016/j.pecs.2017.10.004
Google Scholar
[28]
S. Sivalingam, S. Sen, Rapid ultrasound assisted hydrothermal synthesis of highly pure nanozeolite X from fly ash for efficient treatment of industrial effluent, Chemosphere. 210(2018)816-823.
DOI: 10.1016/j.chemosphere.2018.07.091
Google Scholar
[29]
G.D. Wang, Y. Liu, L. Wang, et al, Hydrothermal synthesis of zeolite from coal fly ash and its characterization, Bull. Chin. Ceram. Soc. 37(2018)2089-2093.
Google Scholar
[30]
L. Wang, G.D. Wang, X.L. Li, et al, Dissolution of silicon and aluminum from fly ash and directional synthesis of X-type zeolite, Chin. J. Environ. Eng. 12(2018)618-624.
Google Scholar
[31]
Z.W. Zhang, X.L. Jiang, Q. Xie, et al, Dissolution of silicon and aluminum from fly ash and directional synthesis of x-type zeolite, Bull. Chin. Ceram. Soc. 34(2015)3095-3101.
Google Scholar
[32]
A. Iqbal, H. Sattar, R. Haider, et al, Synthesis and characterization of pure phase zeolite 4A from coal fly ash, J. Clean. Prod. 219(2019)258-267.
DOI: 10.1016/j.jclepro.2019.02.066
Google Scholar
[33]
R.R. Xu, Chemistry zeolites and porous materials, First ed, Science Press, Bei Jing, (2004).
Google Scholar
[34]
N. Shigemoto, H. Hayashi, K. Miyaura, Selective formation of Na–X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction, J. Mater. Sci. 28(1993)4781-4786.
DOI: 10.1007/bf00414272
Google Scholar
[35]
D.X. Wu, L. Liu, Y.J. Jia, et al, Synthesis of a-zeolite from coal fly ash by alkali fusion-hydrothermal process and its adsorption research, Bull. Chin. Ceram. Soc. 38(2019)1873-1877.
Google Scholar
[36]
X.Y. Ren, S.J. Liu, R.Y. Qu, et al, Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption, Micropor. Mesopor. Mater. 2020, 295. doi: https://doi.org/10.1016/j.micromeso.2019.109940.
DOI: 10.1016/j.micromeso.2019.109940
Google Scholar
[37]
R. Jain, J. Rimer, Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology, Micropor. Mesopor. Mater. 2020, 300. https://doi.org/10.1016/j.micromeso.2020.110174.
DOI: 10.1016/j.micromeso.2020.110174
Google Scholar
[38]
Y.Y. Yue, X.Y. Guo, T. Liu, et al, Template free synthesis of hierarchical porous zeolite Beta with natural kaolin clay as alumina source, Micropor. Mesopor. Mater. 2019, 293. doi: https://doi.org/10.1016/j.micromeso.2019.109772.
DOI: 10.1016/j.micromeso.2019.109772
Google Scholar
[39]
J.X. Li, C.H. Shi, H.F. Zhang, et al, Silicalite-1 zeolite membrane: synthesis by seed method and application in organics removal, Chemosphere. 218(2019)984-991.
DOI: 10.1016/j.chemosphere.2018.11.215
Google Scholar
[40]
X.S. Zhao , G.Q. Lu, H.Y. Zhu, Effects of ageing and seeding on the formation of zeolite Y from coal fly ash, J. Porous Mater. 4(1997)245-251.
Google Scholar
[41]
X.Q. Zeng, Y.P. Ye, M.W. Wang, et al, Synthesis of pure zeolites by dissolved silicon and aluminium from fly ash by stages, Bull. Chin. Ceram. Soc. 26(2007)19-24.
Google Scholar
[42]
A.L. Figueiredo, A.S. Araujo, M. Linares, et al. Catalytic cracking of LDPE over nanocrystalline HZSM-5 zeolite prepared by seed-assisted synthesis from an organic-template-free system, J. Anal. Appl. Pyrol. 117(2016)132-140.
DOI: 10.1016/j.jaap.2015.12.005
Google Scholar
[43]
K.P. Pritam, K.S. Shishir, Innovative utilization of fly ash in concrete tiles for sustainable construction, Mater. Today. Proc. 2020. doi: https://doi.org/10.1016/j.matpr.2020.02.971.
Google Scholar
[44]
L.J. Ma, L.N. Han, S. Chen, et al, Rapid synthesis of magnetic zeolite materials from fly ash and iron-containing wastes using supercritical water for elemental mercury removal from flue gas, Fuel. Process. Technol. 189(2019)39-48.
DOI: 10.1016/j.fuproc.2019.02.021
Google Scholar
[45]
L.J. Ma, L. Zhang, H.L. Gao, et al, Preparation of zeolite molecular sieve with fly ash and treatment of wastewater containing copper, Bull. Chin. Ceram. Soc. 38(2019)4037-4041.
Google Scholar
[46]
X.Y. Cui, S.W. Chen, X.L. Yan , et al, Removal of Ni2+ from waste water by Na-X zeolite synthesized from coal fly ash, J. Fuel. Chem. Technol. 37(2009)752-756.
Google Scholar
[47]
X.P. He, B. Yao, Y. Xia, et al, Coal fly ash derived zeolite for highly efficient removal of Ni2+ inwaste water, Powder Technol. 367(2020)40-46.
DOI: 10.1016/j.powtec.2019.11.037
Google Scholar
[48]
S. Sivalingam, T. Kella, M. Maharana, et al, Efficient sono-sorptive elimination of methylene blue by fly ash-derived nano-zeolite X: process optimization, isotherm and kinetic studies, J. Clean. Prod. 208(2019)1241-1254.
DOI: 10.1016/j.jclepro.2018.10.200
Google Scholar
[49]
T. Bo, M. Ji, The advance of control techniques for internal pollution, Ecol. Environ. Sci. 26(2017)514-521.
Google Scholar
[50]
H.R. Chen, X.X. Zhou, J.L. Shi, Research progress on hierarchically porous zeolites: dtructural control, synthesis and catalytic applications, J. Inorg. Mater. 33(2018)113-128.
Google Scholar
[51]
T.T. Zhao, Y.Q. Wang, C. Sun, et al, Direct synthesis of hierarchical binder-free ZSM-5 and catalytic properties for MTP, Micropor. Mesopor. Mater. 292(2020), doi: https://doi.org/10.1016/j.micromeso.2019.109731.
DOI: 10.1016/j.micromeso.2019.109731
Google Scholar