Creation of Basalt Plastics with Different Types of Hybrid Matrices

Article Preview

Abstract:

Basalt plastic, thanks to its complex of valuable operational properties, has a potential variety of applications. the article describes the technology of production of basalt plastics with various types of hybrid matrices, one of the components of which is cured in the molding process, and the second-like a binder in natural materials, retains its viscoelastic state. The viscoelastic component makes it possible to increase the deformation properties in the zones of their location, preventing cracking under increased loads. As a result of the conducted mechanical tensile tests, the average values of absolute breaking forces, tensile strength and elongation during fracture of basalt plastic samples with different types of hybrid matrices were obtained. The addition of viscoelastic components (such as technical wax, anaerobic, and organosilicon polymer materials) to the basalt plastic matrix allows to increase the elongation at fracture by 2...5%. Anaerobic polymer material in the basalt plastic matrix allows to increase the tensile strength of the composite material, as well as significantly reduce the dispersion of the measured values. This provides an effective prediction of the operational properties of the structural material in the design of products. On the basis of microanalysis of the structure of basalt plastics with different types of hybrid matrices, an explanation of the causes of changes in the mechanical properties of the resulting composite materials is given.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

189-195

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.L. Kerber, V.M. Vinogradov, G.S. Golovkin and others, Polymer composite materials: structure, properties, technology, ed. A.A. Berlin, Professiya, St. Petersburg, 2008 (M.L. Kerber, V.M. Vinogradov, G.S. Golovkin i dr., olimernye kompozitsionnye materialy: struktura, svoystva, tekhnologiya, pod red. A.A. Berlina, Professiya, Sankt-Peterburg, 2008).

Google Scholar

[2] A.I. Rudskoy, A.A. Popovich, A.V. Grigor'yev, Composite materials and coatings, Publishing House of Polytechnical University, Sankt-Peterburg, 2017 (A.I. Rudskoy, A.A. Popovich, A.V. Grigor'yev, Kompozitsionnye materialy i pokrytiya, Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya Sankt-Peterburgskiy politekhnicheskiy universitet Petra Velikogo,, Sankt-Peterburg, 2017).

DOI: 10.31618/2658-7556-2020-27-2-2

Google Scholar

[3] V.A. Nelyub, A.S. Borodulin, L.P. Kobets L.P. Thixotropy Hysteresis and Structure Formation in Elastomeric Suspensions, Inorganic Materials: Applied Research, Vol. 9. No 4 (2018) 603-608.

DOI: 10.1134/s2075113318040238

Google Scholar

[4] D.A. Melnikov, A.A. Gromova, A.E. Raskutin A.O. Kurnosov, Theoretical calculation and experimental determination of the elastic modulus and strength of fiberglass VPS-53/120, Proceedings of VIAM, No 1 (2017) 64-75 (D.A. Melnikov, A.A. Gromova, A.E. Raskutin A.O. Kurnosov, Teoreticheskiy raschet i eksperimental'noe opredelenie modulya uprugosti i prochnosti stekloplastika VPS-53/120, Trudy VIAM, No 1 (2017) 64-75).

DOI: 10.18577/2307-6046-2017-0-1-8-8

Google Scholar

[5] E.A. Kosenko, N.I. Baurova, V.A. Zorin, The Development of natural-like polymer composite materials with liquid matrix and their use in mechanical engineering, Polymer Science, Series D, No 3 (2020) 341-344.

DOI: 10.1134/s1995421220030107

Google Scholar

[6] E.A. Kosenko, N.I. Baurova, V.A. Zorin, Service properties of composites with various types of hybrid matrices, Russian Metallurgy (Metally), No 13 (2020) 1526-1530.

DOI: 10.1134/s0036029520130169

Google Scholar

[7] V.A. Zorin, N.I. Baurova, V.I. Balovnev, V.V. Grib, E.A. Kosenko, Assessing the State of Mechanical Systems of Different Complexity, Russian Engineering Research, Vol. 39. No 8 (2019) 683-685.

DOI: 10.3103/s1068798x19080239

Google Scholar

[8] V.A. Zorin, N.I. Baurova, V.I. Balovnev, V.V. Grib, E.A. Kosenko, Informational Model of State Change in a Mechanical System, Russian Engineering Research, Vol. 39. No 8 (2019) 680-682.

DOI: 10.3103/s1068798x19080227

Google Scholar

[9] A.P. Petrova, G.V. Malysheva, Adhesives, adhesive binders and adhesive prepregs, ed E.N. Kablov, VIAM, Moscow, 2017 (A.P. Petrova, G.V. Malysheva, Klei, kleevye svyazuyushchie i kleevye prepregi, pod red. E.N. Kablova, VIAM, Moskva, 2017).

Google Scholar

[10] J.E. Gordon, The New Science of Strong Materials: Or Why You Don't Fall Through the Floor, Princeton University Press, Princeton, (2006).

Google Scholar

[11] J. Cook, J.E. Gordon, A mechanism for the control of crack propagation in all-brittle systems, Proceedings of the royal society A. vol 282(1391) (1964) 508-520.

DOI: 10.1098/rspa.1964.0248

Google Scholar

[12] E.A. Nikolaeva, Fundamentals of fracture mechanics, Perm State Technical University, Perm, 2010 (E.A. Nikolaeva, Osnovy mekhaniki razrusheniya, Permskiy gosudarstvennyy tekhnicheskiy universitet, Perm`, 2010).

Google Scholar

[13] L.I. Bondaletova, V.G. Bondaletov, Polymer composite materials, Publishing house of the Tomsk Polytechnic University, Tomsk, 2013 (L.I. Bondaletova, V.G. Bondaletov, Polimernye kompozitsionnye materialy, Izd-vo Tomskogo politekhnicheskogo universiteta, Tomsk, 2013).

DOI: 10.17223/19988648/44/4

Google Scholar

[14] Yu. S. Lipatov, Interphase phenomena in polymers, Naukova Dumka, Kiev, 1980 (Yu. S. Lipatov, Mezhfaznye yavleniya v polimerakh, Naukova dumka, Kiev, 1980).

DOI: 10.1080/00218468208073194

Google Scholar