Synthesis of a Composite Alloy Based on Ore Concentrate and Oxide Compounds

Article Preview

Abstract:

The conditions for the synthesis of Al-Cr-W alloys during the aluminothermic reduction of a mineral tungsten concentrate - scheelite were considered. The alloys were identified as an aluminum matrix by the methods of elemental and X-ray phase analyzes. It is shown that the alloy synthesized from scheelite concentrate contains small amounts of iron and oxygen impurities (1.2 wt. %). It has been established that the alloys have a composite structure: inclusions of continuously solid solutions based on chromium and tungsten, as well as chromium aluminides Al3(Cr, W, Fe)2, which have increased microhardness values (12.9 GPa) are distributed in the aluminum matrix.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

218-223

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bains P. S., Sidhu S. S., Payal H. S. Fabrication and machining of metal matrix composites: a review //Materials and Manufacturing Processes. – 2016. – Т. 31. – №. 5. – С. 553-573.

DOI: 10.1080/10426914.2015.1025976

Google Scholar

[2] Shukla M. et al. Characteristic behaviour of aluminium metal matrix composites: a review //Materials Today: Proceedings. – 2018. – Т. 5. – №. 2. – С. 5830-5836.

DOI: 10.1016/j.matpr.2017.12.180

Google Scholar

[3] Mavhungu S. T. et al. Aluminum matrix composites for industrial use: advances and trends //Procedia Manufacturing. – 2017. – Т. 7. – С. 178-182.

DOI: 10.1016/j.promfg.2016.12.045

Google Scholar

[4] Sahraeinejad S. et al. Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters //Materials Science and Engineering: A. – 2015. – Т. 626. – С. 505-513.

DOI: 10.1016/j.msea.2014.12.077

Google Scholar

[5] Feistauer E. E. et al. Ultrasonic joining: A novel direct-assembly technique for metal-composite hybrid structures //Materials Letters. – 2016. – Т. 170. – С. 1-4. 10.1016/j.matlet.2016.01.137.

DOI: 10.1016/j.matlet.2016.01.137

Google Scholar

[6] Yar-Mukhamedova G. et al. Mathematical model of composite materials formation //International Multidisciplinary Scientific GeoConference: SGEM. – 2017. – Т. 17. – С. 201-208.

DOI: 10.5593/sgem2017/61/s24.027

Google Scholar

[7] Yolshina L. A. et al. Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties //Journal of alloys and compounds. – 2016. – Т. 663. – С. 449-459.

DOI: 10.1016/j.jallcom.2015.12.084

Google Scholar

[8] Chen B. et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests //Composites Science and Technology. – 2015. – Т. 113. – С. 1-8.

DOI: 10.1016/j.compscitech.2015.03.009

Google Scholar

[9] Mohanavel V. et al. A review on mechanical and tribological behaviour of aluminium based metal matrix composites //Int. J. Mech. Prod. Eng. Res. Devel. – 2018. – С. 473-478.

Google Scholar

[10] Sijo M. T., Jayadevan K. R. Analysis of stir cast aluminium silicon carbide metal matrix composite: A comprehensive review //Procedia technology. – 2016. – Т. 24. – №. 2016. – С. 379-385.

DOI: 10.1016/j.protcy.2016.05.052

Google Scholar

[11] Korosteleva E. N., Korzhova V. V., Krinitcyn M. G. Sintering behavior and microstructure of TiC-Me composite powder prepared by SHS //Metals. – 2017. – Т. 7. – №. 8. – С. 290.

DOI: 10.3390/met7080290

Google Scholar

[12] Xu J. et al. Fabrication and properties of Al2O3–TiB2–TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders //Journal of Alloys and Compounds. – 2016. – Т. 672. – С. 251-259.

DOI: 10.1016/j.jallcom.2016.02.116

Google Scholar

[13] Lu J. et al. Fabrication of Ni-Al/diamond composite based on Layered and Gradient Structures of SHS system //Science of Sintering. – 2017. – Т. 49. – №. 2.– 149-158 10.2298/SOS1702149L.

DOI: 10.2298/sos1702149l

Google Scholar

[14] Li H. et al. Microstructure and mechanical properties of an in-situ TiB2/Al-Zn-Mg-Cu-Zr composite fabricated by Melt-SHS process //Materials Science and Engineering: A. – 2018. – Т. 720. – С. 60-68.

DOI: 10.1016/j.msea.2018.02.025

Google Scholar

[15] Yukhvid V. I. et al. Synthesis of cast composite materials by SHS metallurgy methods //Key Engineering Materials. – Trans Tech Publications Ltd, 2017. – Т. 746. – С. 219-232.

DOI: 10.4028/www.scientific.net/kem.746.219

Google Scholar

[16] Andreev D. E. et al. Centrifugal SHS-Metallurgy of Composite Materials Mo–Si–B //Russian Journal of Physical Chemistry B. – 2020. – Т. 14. – С. 261-265. 10.1134/S1990793120020025.

DOI: 10.1134/s1990793120020025

Google Scholar

[17] Fan X. et al. Preparation and characterization of NiAl–TiC–TiB2 intermetallic matrix composite coatings by atmospheric plasma spraying of SHS powders //Ceramics International. – (2020).

DOI: 10.1016/j.ceramint.2020.01.052

Google Scholar

[18] Pribytkov G. A. et al. Self-propagating high-temperature synthesis of metal matrix composite powders from mechanoactivated powder mixtures //International Symposium on Self-Propagating High-Temperature Synthesis. – Институт структурной макрокинетики и проблем материаловедения им. АГ Мержанова Российской академии наук, 2019. – №. XV.

DOI: 10.30826/scpm2018044

Google Scholar

[19] Sanin V. N. et al. Protective Mo 2 NiB 2–Ni coatings by centrifugal metallothermic SHS //International Journal of Self-Propagating High-Temperature Synthesis. – 2015. – Т. 24. – №. 3. – С. 161-170.

DOI: 10.3103/s1061386215030097

Google Scholar

[20] Gostishchev V. et al. Synthesis of complex-alloyed nickel aluminides from oxide compounds by aluminothermic method //Metals. – 2018. – Т. 8. – №. 6. – С. 439. 10.3390/met8060439.

DOI: 10.3390/met8060439

Google Scholar

[21] Gostishchev V. et al. Obtaining of complex-alloyed nickel aluminides and complex ligatures by metal oxides metallothermy // Tsvetnye Metally. – 2017. – №. 10. – С. 79-84.

DOI: 10.17580/tsm.2017.10.10

Google Scholar

[22] Levashov E. A. et al. Self-propagating high-temperature synthesis of advanced materials and coatings //International materials reviews. – 2017. – Т. 62. – №. 4. – С. 203-239 10.1080/09506608.2016.1243291.

DOI: 10.1080/09506608.2016.1243291

Google Scholar

[23] Gostishchev V. V. et al. High-Temperature Synthesis of Al–Zr–W Aluminum-Matrix Alloys //Inorganic Materials. – 2019. – Т. 55. – №. 1. – С. 32-36.

DOI: 10.1134/s0020168519010059

Google Scholar