[1]
R. Mendoza, J. Huante, M. Alanis, C. Gonzalez-Rivera, J.A. Juarez-Islas, Processing of ultra low carbon steels with mechanical properties adequate for automotive applications in the as-annealed condition, Mater. Sci. Eng. A. 276 (2000) 203–209.
DOI: 10.1016/s0921-5093(99)00267-1
Google Scholar
[2]
W.C. Jeong, Strength and formability of ultra-low-carbon Ti-IF Steels, Metall. Mater. Trans. A. 31A (2000) 1305–1307.
DOI: 10.1007/s11661-000-0125-z
Google Scholar
[3]
W.M. Thomas, E.D. Nicholas, Friction stir welding for the transportation industries, Mater. Des. 18 (1997) 269–273.
DOI: 10.1016/s0261-3069(97)00062-9
Google Scholar
[4]
R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, K. Nogi, Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process, Mater. Sci. Eng. A. 423 (2006) 324–330.
DOI: 10.1016/j.msea.2006.02.038
Google Scholar
[5]
T.J. Lienert, W.L. Stellwag Jr., B.B. Grimmett, R.W. Warke, Friction stir welding studies on mild steel, Weld. Jour. 1 (2003) 1-9.
Google Scholar
[6]
L. Cui, H. Fujii, N. Tsuji, K. Nogi, Friction stir welding of a high carbon steel, Scr. Mater. 56 (2007) 637–640.
DOI: 10.1016/j.scriptamat.2006.12.004
Google Scholar
[7]
F. Ye, H. Fujii, T. Tsumura, K. Nakata, Friction stir welding of Inconel alloy 600, J. Mater. Sci. 41 (2006) 5376–5379.
DOI: 10.1007/s10853-006-0169-6
Google Scholar
[8]
U. Dressler, G. Biallas U.A. Mercado, Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3, Mater. Sci. Eng. A. 526 (2009) 113–117.
DOI: 10.1016/j.msea.2009.07.006
Google Scholar
[9]
F. Su, R. Song, Z. Wen, Experimental Research on Oxidation of Ultra-low Carbon Interstitial-free Steel at High Temperatures in Rolling, Gongcheng Kexue Yu Jishu/Advanced Eng. Sci. 52 (2) (2020) 200-206.
Google Scholar
[10]
P.A. Kulakov, A.A. Kutlubulatov, V.G. Afanasenko, Forecasting of the Hydraulic Fracturing Efficiency as Components of Its Design Optimization, Socar Proc. 2 (2018) 41–48.
DOI: 10.5510/ogp20180200349
Google Scholar
[11]
C. Roxas, L. Bernardo, An artificial neural network model for the corrosion current density of steel in mortar mixed with seawater, Int. J. Geom. 16 (56) (2019) 79–84.
Google Scholar
[12]
R.N. Khasanov, A.S. Valiev, I.R. Kuzeev, Assessment of mechanical characteristics of steel subject to cyclic loads effect on non-standard compact specimens, MATEC Web Conf. 224 (2018) 04025.
DOI: 10.1051/matecconf/201822404025
Google Scholar
[13]
S.N. Tropkin, R.R. Tlyasheva, M.I. Bayazitov, I.R. Kuzeev, Analysis of dynamical response of air blast loaded safety device, IOP Conf Ser.: Mater. Sci. Eng. 327(4) (2018) 042012.
DOI: 10.1088/1757-899x/327/4/042012
Google Scholar
[14]
S. Cordeiro, E. Leonel, Mechanical modelling of three-dimensional cracked structural components using the isogeometric dual boundary element method, Appl. Mathem. Modell. 63 (2018) 415-44.
DOI: 10.1016/j.apm.2018.06.042
Google Scholar
[15]
M. Cozzani, 3-dimensional finite element analysis of the outcomes of Alexander, Gianelly, Roth and MBT bracket prescription, Int. Orthod. 17(1) (2019) 45-52.
DOI: 10.1016/j.ortho.2019.01.010
Google Scholar
[16]
E.A. Naumkin, A.V. Rubtsov, P.A. Kulakov, A.R. Berdin, The assessment of the individual resource of the welded joint during repairs of the technological pipeline, IOP Conf. Ser.: Mater. Sci. Eng. 734 (2020) 1-8.
DOI: 10.1088/1757-899x/734/1/012215
Google Scholar
[17]
B.A. Sundaram, K.S. Kesavan, Recent Advances in Health Monitoring and Assessment of In-service Oil and Gas Buried Pipelines, J. The Institution of Engineers: Series A 90 (2018) 729-740.
DOI: 10.1007/s40030-018-0316-5
Google Scholar
[18]
D. Rifai, A. Abdalla, R. Razali, An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design, Sensors (Basel). 17 (3) (2017) 579-603.
DOI: 10.3390/s17030579
Google Scholar
[19]
G.S. Park, Improvement of the sensor system in magnetic flux leakage-type nondestructive testing (NDT), IEEE Trans. Magn. 38 (2) (2002) 1277-1280.
DOI: 10.1109/20.996326
Google Scholar
[20]
H. Gruger, Array of miniaturized fluxgate sensors for non-destructive testing applications, Sens. Actuat. 106 (2007) 326-328.
DOI: 10.1016/s0924-4247(03)00194-8
Google Scholar
[21]
W.S. Sharatchandra, GMR-based magnetic flux leakage technique for condition monitoring of steel track rope, Insight 53 (7) (2011) 377-381.
DOI: 10.1784/insi.2011.53.7.377
Google Scholar
[22]
J. Zhang, X. Liu, A comparative study between magnetic field distortion and magnetic flux leakage techniques for surface defect shape reconstruction in steel plates, Sens. and Act., A: Phys. 288 (2019) 10-20.
DOI: 10.1016/j.sna.2019.01.019
Google Scholar
[23]
S.F. Dmitriev, V.N. Malikov, Non-destructive Testing of Quality of Welded Joints of Titanium Plates of Superminiature Eddy-Current Probes, Advan.Intell. Sys. Comput. 1115 (2020) 980-989.
DOI: 10.1007/978-3-030-37916-2_96
Google Scholar
[24]
S. Dmitriev, V. Malikov, A. Sagalakov, Research of Steel-dielectric Transition Using Subminiature Eddy-current Transducer, J. Phys.: Conf. Ser. 1015(5) (2018) 052005.
DOI: 10.1088/1742-6596/1015/5/052005
Google Scholar