[1]
Caron P. French Research and Development Activities on High-Performance Superalloys for Gas Turbine Components. Materials Science Forum. V. 546-549 (2007) 1179–1186. https://doi.org/10.4028/www. scientific.net / msf.546-549.1179.
DOI: 10.4028/www.scientific.net/msf.546-549.1179
Google Scholar
[2]
O.S. Kashapov, A.V. Novak, N.A. Nochovnaya, T.V. Pavlova. Sostoyanie problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD. Trudy VIAM. №3 (2013) 8 р.
Google Scholar
[3]
L.M. Poltorackii, A.B. Iur'ev, O.D. Sidorova, V.E. Gromov. Metody issledovaniia mikrostruktury i mekkhanicheskikkh svoistv metallov i splavov. Novokuzneck. SibGIU publ. (2008). 162 p.
Google Scholar
[4]
Spravochnik tekhnologa. Pod obshchej red. A.G. Suslova. M. Innovacionnoe mashinostroenie (2019) 800 s. ISBN 978-5-907104-23-5.
Google Scholar
[5]
Z. Liao, A. Abdelhafeez, H. Li, Y. Yang, O. G. Diaz, D. Axinte. State-of-the-art of surface integrity in machining of metal matrix composites. International Journal of Machine Tools and Manufacture. 143(2019) 63-91. https://doi.org/10.1016/j.ijmachtools.2019.05.006.
DOI: 10.1016/j.ijmachtools.2019.05.006
Google Scholar
[6]
V.A. Nosenko, S.V. Nosenko. Mathematical Models of Operating Time and Cutting Capacity for Various Stages of Flat Creep Feed Grinding of Horizontal Surface by Circle of Direct Profile. Journal of Machinery Manufacture and Reliability. 39(4) (2010) 380-385.
DOI: 10.3103/s1052618810040138
Google Scholar
[7]
S.V. Nosenko, V.A. Nosenko, A.A. Bairamov. Factors affecting the surface roughness in the deep grinding of titanium alloys. Russian Engineering Research. 35(7). (2015) 549-553.
DOI: 10.3103/s1068798x15070151
Google Scholar
[8]
V.A. Nosenko, A.V. Fetisov, S.P. Kuznetsov. Morphology and chemical composition of the titanium alloy surface at the initial stage of grinding with a cubic boron nitride wheel. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science. Vol. 22. no. 2 (2020) 30–40.
DOI: 10.35211/1990-5297-2020-3-238-42-45
Google Scholar
[9]
V.A. Nosenko, A.A. Kruticova. Improving abrasive tool cutting properties with the use of impregnators that emit chemically active gas media during thermal decomposition. Materials Today: Proceedings. 19. Part 5 (2019) 2041-2045. – doi: https://doi.org/10.1016/j.matpr.2019.07.070.
DOI: 10.1016/j.matpr.2019.07.070
Google Scholar
[10]
V.A. Nosenko, A.V. Fetisov, V.Y. Puzyrkova. Morphology and Chemical Composition of Silicon Carbide Surfaces Interacting with Iron, Cobalt, and Nickel in Microscratching. Solid State Phenomena. 284 (2018) 363-368.–.
DOI: 10.4028/www.scientific.net/ssp.284.363
Google Scholar
[11]
S.V. Nosenko, V.A. Nosenko, A.A. Koryazhkin. The Effect of the Operating Speed and Wheel Characteristics on the Surface Quality at Creep-Feed Grinding Titanium Alloys. Solid State Phenomena. 284 (2018) 369-374. –.
DOI: 10.4028/www.scientific.net/ssp.284.369
Google Scholar
[12]
D.T. Curtis, S.L. Soo, D.K. Aspinwall, Andrew Mantle. Evaluation of Workpiece Surface Integrity Following Point Grinding of Advanced Titanium and Nickel Based Alloys. Procedia CIRP. 45 (2016) 47-50.
DOI: 10.1016/j.procir.2016.02.343
Google Scholar
[13]
V.A. Nosenko, A.V. Fetisov, S.P. Kuznesov. Transfer of Cubic Boron Nitride Grinding Wheel Wear Products to the Nickel Alloy Surface. MATEC Web of Conferences. 329. 03050 (2020) 8 P. – DOI: https://doi.org/10.1051/matecconf/202032903050.
DOI: 10.1051/matecconf/202032903050
Google Scholar
[14]
L Rypina, D. Lipinski, B. Balasz, W. Kacalak, T. Szatkiewicz. Analysis and Modeling of the Micro-Cutting Process of Ti-6Al-4V Titanium Alloy with Single Abrasive Grain. Materials. 13(24):5835 (2020) 18 P. DOI: https://doi.org/10.3390/ma13245835.
DOI: 10.3390/ma13245835
Google Scholar
[15]
F. Ducobu, P.J., Arrazola, E. Riviere-Lorphevre, E. Filippi. On the selection of an empirical material constitutive model for the finite element modeling of Ti6Al4V orthogonal cutting, including the segmented chip formation. International Journal of Material Forming. Original Research. Springer Professional. 29.01. (2020).DOI: https://doi.org/10.1007/s12289-020-01535-2.
DOI: 10.1007/s12289-020-01535-2
Google Scholar
[16]
I.V. Antonets, L.N. Kotov, V.G. Shavrov, V.I. Shcheglov. Conducting and reflecting properties of nanometer-width films of various metals. Tribology International. 18, Issue 4 (1985) 237-245.
DOI: 10.1134/s1064226906120096
Google Scholar
[17]
Z. Tao, Y. Shi, L. Sampsa, J. Zhou. Investigation of the effect of grinding parameters on surface quality in grinding of TC4 titanium alloy. Procedia Manufacturing. 11 (2017) 2131–2138. –.
DOI: 10.1016/j.promfg.2017.07.344
Google Scholar
[18]
X. Xi, T. Yu, W. Ding, J. Xu. Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels: tool surface topology effect on grinding force and ground surface quality. Precision Engineering. 53. (2018) 134–145. –.
DOI: 10.1016/j.precisioneng.2018.03.007
Google Scholar
[19]
A. Mello, R.B. de Silva, A.R. Machado, R.V. Gelamo, A.E. Diniz, R.F.M. de Oliveira. Surface grinding of Ti-6Al-4V Surface grinding of Ti-6Al-4V alloy with SiC abrasive wheel at various cutting conditions. Procedia Manufacturing. 10 (2017) 590–600. –.
DOI: 10.1016/j.promfg.2017.07.057
Google Scholar
[20]
V.A. Nosenko. Interaction intensity criterion for machined and abrasive materials in grinding. Problems of mechanical engineering and machine reliability. 5 (2001) 85-91.
Google Scholar
[21]
V.A. Nosenko. On contact interaction intensity of d-transition metals with silicon carbide in grinding. Problems of mechanical engineering and machine reliability. 5 (2002) 78-84.
Google Scholar
[22]
G.V. Samsonov, I.F. Pryadko, L.F. Pryadko, Elektronnaya lokalizaciya v tvyordom tele [Electronic localization in a solid]. Moskva. Nauka (1976) 339 p.
Google Scholar