[1]
A. N. Bobryshev, V. I. Solomatov. Structural and topological features of kinetic processes / A. N. Bobryshev, V. I. Solomatov, R. I. Avdeev, V. N. Kozomazov, V. G. Korvyakov / / Bulletin of the Department of Construction Sciences of the Russian Academy of Sciences, Vol. 3, 2000. 109-114.
Google Scholar
[2]
Simon, D. A., Andrianov, E. I. Autogate bulk materials. Powder Technol. 161, (2006) 248–255.
Google Scholar
[3]
Krasny B. L., Tarasovsky V. P., Krasny A. B., Kuteynikova A. L. Influence of the habitus of filler crystals and the particle size of a nanodispersed technological binder on the properties of a porous permeable ceramic material. 2007. No. 9. S. 45-48.
Google Scholar
[4]
Krasny B. L., Tarasovsky V. P., Krasny A. B., Uss A.M. Influence of the size and shape of electropelted corundum crystals on the microstructure and permeability of porous ceramics. 2009. No. 12. 20-25.
Google Scholar
[5]
Tarasovsky V. P., Shlyapin A.D., Omarov A. Yu., Vasin A. A., Kormilitsin M. N. Comparative analysis of the mobility and compaction parameters of F240 grinding powders of different manufacturers. 2018. No. 9. 35-39.
DOI: 10.1007/s11148-019-00260-x
Google Scholar
[6]
E. J. R. Parteli et al. Attractive particle interaction forces and packing density of fine glass powders //Scientific reports. 2014. Vol. 4. R. 6227.
DOI: 10.1038/srep06227
Google Scholar
[7]
Pöschel, T., Schwager, T. Computational Granular Dynamics (Springer, Heidelberg, 2005), V1.
Google Scholar
[8]
Pöschel, T., Schwager, T. Computational Granular Dynamics (Springer, Heidelberg, 2005),V2.
Google Scholar
[9]
Götzinger, M. & Peukert, W. Dispersive forces of particle-surface inter-actions: direct AFM measurements and modelling. Powder Technol. 130, (2003) 102–109.
DOI: 10.1016/s0032-5910(02)00234-6
Google Scholar
[10]
Götzinger, M. & Peukert, W. Particle Adhesion Force Distributions on Rough Surfaces. Langmuir 20, (2004) 5298–5303.
DOI: 10.1021/la049914f
Google Scholar
[11]
Li, Q., Rudolph, V. & Peukert, W. London-van der Waals adhesive-ness of roughsurfaced particles. Powder Technol. 161, (2006) 248–255.
DOI: 10.1016/j.powtec.2005.10.012
Google Scholar
[12]
Ackler H. D., French R. H., Chiang Y. M. Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water: From force laws and physical properties //Journal of Colloid and Interface Science. (1996) Vol. 179. no. 2. 460-469.
DOI: 10.1006/jcis.1996.0238
Google Scholar
[13]
S. Matsusaka, H. Maruyama, T. Matsuyama, M. Ghadiri, Triboelectric charging of powders: a review, Chem. Eng. Sci. 22 (2010) 5781 -5807.
DOI: 10.1016/j.ces.2010.07.005
Google Scholar
[14]
Parteli E. J. R., Pöschel T. Particle-based simulation of powder appli-cation in additive manufacturing //Powder Technology. (2016) 288 96-102.
DOI: 10.1016/j.powtec.2015.10.035
Google Scholar
[15]
Berney I. I., Belov V. V., Safonov A. A. Penetrational rheometer for research and control of rheological properties of fine-grained dispersed systems / / Acceleration of scientific and technical progress in the construction materials and construction industry. Belgorod: BTIM (1987) 23.
Google Scholar
[16]
Berney I. I., Belov V. V. Forces of capillary coupling and their influence on the technology and properties of building materials. - Kalinin: TSU, (1979) 3-44.
Google Scholar
[17]
Folliard K. J., Berke N. S. Properties of Higf-Performance Concrete Containing Shrinkage-Reducing Admixtures // Cem. Concr. Res.-Vol. 27, No. 9, (1997) 1357-1364.
DOI: 10.1016/s0008-8846(97)00135-x
Google Scholar