[1]
Song, Y., Li, B., Yang, E., Liu, Y. & Ding T. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement and Concrete Composites, 56 (2015) 51-58.
DOI: 10.1016/j.cemconcomp.2014.11.006
Google Scholar
[2]
Wang, Ch., WANG, Ni, W., Zhang, S., Wang, S., Gai, G. & Wang W. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Construction and Building Materials, 104 (2016). 109-115.
DOI: 10.1016/j.conbuildmat.2015.12.041
Google Scholar
[3]
Brar, Tejwant S., M. Arif Kamal, and Pinto Emerson. Recycling of Construction and Demolition Waste Material for Energy Savings in India Key Engineering Materials 632 (2014): 107–17.
DOI: 10.4028/www.scientific.net/kem.632.107
Google Scholar
[4]
K.L. Lin, K.S. Wang, B.Y. Tzeng, C.Y. Lin, Hydraulic activity of cement mixed with slag from vitrified solid waste incinerator fly ash, Waste Management & Research. 21 (2003) 567-574.
DOI: 10.1177/0734242x0302100609
Google Scholar
[5]
G.A. Calligaris, M.K.K.D. Franco, L.P. Aldrige, M.S. Rodrigues, A.L. Beraldo, F. Yokaichiya, X. Turrillas, L.P. Cardoso, Assessing the pozzolanic activity of cements with added sugar cane straw ash by synchrotron X-ray diffraction and Rietveld analysis, Construction and Building Materials. 98 (2015) 44-50.
DOI: 10.1016/j.conbuildmat.2015.08.103
Google Scholar
[6]
J. Zhu, B. Birgisson, N. Kringos, Polymer modification of bitumen: Advances and challenges, European Polym. J. 54 (2014) 18-38.
DOI: 10.1016/j.eurpolymj.2014.02.005
Google Scholar
[7]
F. M. Nejad, M. Arabani, Gh. H. Hamedi, A. R. Azharhoosh, Influence of using polymeric aggregate treatment on moisture damage in hot mix asphalt, Constr. Build. Mater. 47 (2013) 1523-1527.
DOI: 10.1016/j.conbuildmat.2013.06.060
Google Scholar
[8]
Y. Guney, A.H. Aydilek, M.M. Demirkan, Geoenvironment behavior of foundry sand amended mixtures for highway subbases, J. Waste Management. 26 (2006) 932-945.
DOI: 10.1016/j.wasman.2005.06.007
Google Scholar
[9]
Santos, C. C., dalla Valentina, L. O. V., Cuzinsky, F. C., &Witsmiszyn, L. C.. Interlocking Concrete Paving Blocks Produced with Foundry Sand Waste. Materials Science Forum, 912 (2018) 191–195.
DOI: 10.4028/www.scientific.net/msf.912.191
Google Scholar
[10]
Rodriguez, A.L., Queiroz, É.V., López, D.A.R., Wermuth, T.B., Basegio, T.M., Bergmann, C.P., Utilization of Foundry Waste to Produce Ceramic Matrix Composites. MSF 869 (2016.) 149–154.
DOI: 10.4028/www.scientific.net/msf.869.149
Google Scholar
[11]
Coelho, A.R., Pereira, H.R.S., Faganello, L., Valentina, L.V.O.D., Study of Water Retention in Mortars Produced with Foundry Powder. MSF 820 (2015.) 488–491.
DOI: 10.4028/www.scientific.net/msf.820.488
Google Scholar
[12]
Zheng, Y., 2012. Preparation, Properties, Formation Mechanism of Autoclaved Bricks from Waste Foundry Sand. AMM 174–177 697–700.
DOI: 10.4028/www.scientific.net/amm.174-177.697
Google Scholar
[13]
BakisRecep, KoyuncuHakan, DemirbasAyhan.J. Waste Management and Research. Vol. 24 (2006) 269.
Google Scholar
[14]
Bhat Subrahmanya T, Lovell, C. W, in: Flowable fill using waste foundry sand: a substitute for compacted or stabilized soil. ASTM. Special Technical Publication (1997).
DOI: 10.1520/stp15640s
Google Scholar
[15]
Iyer, A.V., Bhat, H.A., Krishna, K.K., Anbuudayasankar, S.P., Green Manufacturing Approaches for the Foundry Sector. AMM. 592–594 (2014) 2654–2658.
DOI: 10.4028/www.scientific.net/amm.592-594.2654
Google Scholar
[16]
Pugin, K.G. Influence of quality indicators of the surface of mineral particles on the properties of asphalt concrete. IOP Conference Series: Materials Science and Engineering. 971(3) (2020) 032043.
DOI: 10.1088/1757-899x/971/3/032043
Google Scholar
[17]
Tyuryukhanov, K.Y., Pugin, K.G.An Impact of Waste Foundry Sand on Asphalt Concrete Mixture. IOP Conference Series: Materials Science and Engineering. 753(2) (2020) 022079.
DOI: 10.1088/1757-899x/753/2/022079
Google Scholar