Obtaining Calcium Sulfoaluminate Using Aluminate Waste

Article Preview

Abstract:

In this work, studies have been carried out to replace bauxite with aluminate slags. Compounds of raw mixtures without use of fossil aluminate materials with different gypsum content have been developed. Instability of assimilation of anhydrite into calcium sulphoaluminate has been established. X-ray phase analysis has shown a weak dependence of increase in the firing temperature and increase in the yield of the main mineral C3A3·CŜ. Results of the study allow us to conclude that it is possible to obtain high-quality calcium sulphoaluminate (SAC) based on technogenic aluminate raw material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

743-750

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Monosi. R. Troli. O. Favoni. F. Tittarelli. Effect of SRA on the expansive behaviour of mortars based on sulphoaluminate agent. Cement and Concrete Composites. 33. Issue 4. (2011) 485-489 https://doi.org/10.1016/j.cemconcomp.2011.01.001.

DOI: 10.1016/j.cemconcomp.2011.01.001

Google Scholar

[2] J. Bizzozero. Ch. Gosselin. K. L. Scrivener Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate. Cement and Concrete Research. 56 (2014) 190-202. https://doi.org/10.1016/j.cemconres.2013.11.011.

DOI: 10.1016/j.cemconres.2013.11.011

Google Scholar

[3] R. Gagné. Expansive agents. Science and Technology of Concrete Admixtures. University of Sherbrooke. QC. Canada (2016) 441-456. https://doi.org/10.1016/B978-0-08-100693-1.00022-9.

DOI: 10.1016/b978-0-08-100693-1.00022-9

Google Scholar

[4] T. V. Kouznetsova. S.V. Samchenko. T.A. Lutikova Carbonation of the constituents of hydrated Portland cement. aluminate and sulphoaluminate cements//13 International Baustofftagung -Ibausil. -Weimar. Bundesrepublik Deutschland. 2. 2-0543-2-0546. (1997).

Google Scholar

[5] D. Sirtoli. M.Wyrzykowski. P. Riva. S. Tortelli. M. Marchi. P. Lura. Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement/ Cement and Concrete Composites. 98 (2019) 61-73. https://doi.org/10.1016/j.cemconcomp.2019.02.006.

DOI: 10.1016/j.cemconcomp.2019.02.006

Google Scholar

[6] T. Li. F.Huang. L. Li. J. Zhu. X. Jiang. Y. Huang/ Preparation and properties of sulphoaluminate cement-based foamed concrete with high performance. Construction and Building Materials. 263 (2020) 120945. https://doi.org/10.1016/j.conbuildmat.2020.120945.

DOI: 10.1016/j.conbuildmat.2020.120945

Google Scholar

[7] 15 7Y.Wang. T.Zhang. Y. Zhang. G.Lyu. W. Zhang. Mineral transformation in treating low-grade bauxite using the calcification–carbonization process and preparing cement clinker with the obtained residue. Minerals Engineering. 138 (2019) 139-147. https://doi.org/10.1016/j.mineng.2019.04.031.

DOI: 10.1016/j.mineng.2019.04.031

Google Scholar

[8] 16 8 L. Pelletier-Chaignat. F. Winnefeld. B. Lothenbach. C. J.Müller. Beneficial use of limestone filler with calcium sulphoaluminate cement. Construction and Building Materials. 26. Issue 1 (2012) 619-627. https://doi.org/10.1016/j.conbuildmat.2011.06.065.

DOI: 10.1016/j.conbuildmat.2011.06.065

Google Scholar

[9] Y. Yao.W.Wang. Z. Ge. C.Ren. X. Yao. S. Wu Hydration study and characteristic analysis of a sulfoaluminate high-performance cementitious material made with industrial solid wastes Cement and Concrete Composites. 112 (2020) 103687. https://doi.org/10.1016/j.cemconcomp.2020.103687.

DOI: 10.1016/j.cemconcomp.2020.103687

Google Scholar

[10] O. Canbek. S. Shakouri. S.T. Erdoğan. Laboratory production of calcium sulfoaluminate cements with high industrial waste content. Cement and Concrete Composites. 106 (2020) 103475.

DOI: 10.1016/j.cemconcomp.2019.103475

Google Scholar

[11] V.Petkova. V.Samichkov. Some influences on the thixotropy of composite slag Portland cement suspensions with secondary industrial waste. Construction and Building Materials. 21. Issue 7 (2006) 1520-1527 https://doi.org/10.1016/j.conbuildmat.2006.04.011.

DOI: 10.1016/j.conbuildmat.2006.04.011

Google Scholar

[12] F. Baeza. J. Payá. O.Galao. J.M. Saval. P. Garcés/ Blending of industrial waste from different sources as partial substitution of Portland cement in pastes and mortars/ Construction and Building Materials. 66 (2014) 645-653 https://doi.org/10.1016/j.conbuildmat.2014.05.089.

DOI: 10.1016/j.conbuildmat.2014.05.089

Google Scholar

[13] J. Kerienė.V. Antonovič.R. Stonys. R. Boris The influence of the ageing of calcium aluminate cement on the properties of mortar/ Construction and Building Materials. 205 (2019) 387-397 https://doi.org/10.1016/j.conbuildmat.2019.02.039.

DOI: 10.1016/j.conbuildmat.2019.02.039

Google Scholar

[14] X. Cheng. Q. Dong. Y. Ma. C. Zhang. X. Gao. Y. Yu. Z. Wen. C. Zhang. X. Guo. Mechanical and thermal properties of aluminate cement paste with blast furnace slag at high temperatures. Construction and Building Materials. 228 (2019) 116747. https://doi.org/10.1016/j.conbuildmat.2019.116747.

DOI: 10.1016/j.conbuildmat.2019.116747

Google Scholar

[15] B.S. Cho. H. Ha Lee. Y. C.Choi. Effects of aluminate rich slag on compressive strength. drying shrinkage and microstructure of blast furnace slag cement. Construction and Building Materials. 140 (2017) 293-300. https://doi.org/10.1016/j.conbuildmat.2017.02.111.

DOI: 10.1016/j.conbuildmat.2017.02.111

Google Scholar

[16] A. Mladenovič. B. Mirtič. A. Meden. V.Z. Serjun. Calcium aluminate rich secondary stainless steel slag as a supplementary cementitious material. Construction and Building Materials 116 (2016) 216-225. https://doi.org/10.1016/j.conbuildmat.2016.04.141.

DOI: 10.1016/j.conbuildmat.2016.04.141

Google Scholar