[1]
S. Monosi. R. Troli. O. Favoni. F. Tittarelli. Effect of SRA on the expansive behaviour of mortars based on sulphoaluminate agent. Cement and Concrete Composites. 33. Issue 4. (2011) 485-489 https://doi.org/10.1016/j.cemconcomp.2011.01.001.
DOI: 10.1016/j.cemconcomp.2011.01.001
Google Scholar
[2]
J. Bizzozero. Ch. Gosselin. K. L. Scrivener Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate. Cement and Concrete Research. 56 (2014) 190-202. https://doi.org/10.1016/j.cemconres.2013.11.011.
DOI: 10.1016/j.cemconres.2013.11.011
Google Scholar
[3]
R. Gagné. Expansive agents. Science and Technology of Concrete Admixtures. University of Sherbrooke. QC. Canada (2016) 441-456. https://doi.org/10.1016/B978-0-08-100693-1.00022-9.
DOI: 10.1016/b978-0-08-100693-1.00022-9
Google Scholar
[4]
T. V. Kouznetsova. S.V. Samchenko. T.A. Lutikova Carbonation of the constituents of hydrated Portland cement. aluminate and sulphoaluminate cements//13 International Baustofftagung -Ibausil. -Weimar. Bundesrepublik Deutschland. 2. 2-0543-2-0546. (1997).
Google Scholar
[5]
D. Sirtoli. M.Wyrzykowski. P. Riva. S. Tortelli. M. Marchi. P. Lura. Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement/ Cement and Concrete Composites. 98 (2019) 61-73. https://doi.org/10.1016/j.cemconcomp.2019.02.006.
DOI: 10.1016/j.cemconcomp.2019.02.006
Google Scholar
[6]
T. Li. F.Huang. L. Li. J. Zhu. X. Jiang. Y. Huang/ Preparation and properties of sulphoaluminate cement-based foamed concrete with high performance. Construction and Building Materials. 263 (2020) 120945. https://doi.org/10.1016/j.conbuildmat.2020.120945.
DOI: 10.1016/j.conbuildmat.2020.120945
Google Scholar
[7]
15 7Y.Wang. T.Zhang. Y. Zhang. G.Lyu. W. Zhang. Mineral transformation in treating low-grade bauxite using the calcification–carbonization process and preparing cement clinker with the obtained residue. Minerals Engineering. 138 (2019) 139-147. https://doi.org/10.1016/j.mineng.2019.04.031.
DOI: 10.1016/j.mineng.2019.04.031
Google Scholar
[8]
16 8 L. Pelletier-Chaignat. F. Winnefeld. B. Lothenbach. C. J.Müller. Beneficial use of limestone filler with calcium sulphoaluminate cement. Construction and Building Materials. 26. Issue 1 (2012) 619-627. https://doi.org/10.1016/j.conbuildmat.2011.06.065.
DOI: 10.1016/j.conbuildmat.2011.06.065
Google Scholar
[9]
Y. Yao.W.Wang. Z. Ge. C.Ren. X. Yao. S. Wu Hydration study and characteristic analysis of a sulfoaluminate high-performance cementitious material made with industrial solid wastes Cement and Concrete Composites. 112 (2020) 103687. https://doi.org/10.1016/j.cemconcomp.2020.103687.
DOI: 10.1016/j.cemconcomp.2020.103687
Google Scholar
[10]
O. Canbek. S. Shakouri. S.T. Erdoğan. Laboratory production of calcium sulfoaluminate cements with high industrial waste content. Cement and Concrete Composites. 106 (2020) 103475.
DOI: 10.1016/j.cemconcomp.2019.103475
Google Scholar
[11]
V.Petkova. V.Samichkov. Some influences on the thixotropy of composite slag Portland cement suspensions with secondary industrial waste. Construction and Building Materials. 21. Issue 7 (2006) 1520-1527 https://doi.org/10.1016/j.conbuildmat.2006.04.011.
DOI: 10.1016/j.conbuildmat.2006.04.011
Google Scholar
[12]
F. Baeza. J. Payá. O.Galao. J.M. Saval. P. Garcés/ Blending of industrial waste from different sources as partial substitution of Portland cement in pastes and mortars/ Construction and Building Materials. 66 (2014) 645-653 https://doi.org/10.1016/j.conbuildmat.2014.05.089.
DOI: 10.1016/j.conbuildmat.2014.05.089
Google Scholar
[13]
J. Kerienė.V. Antonovič.R. Stonys. R. Boris The influence of the ageing of calcium aluminate cement on the properties of mortar/ Construction and Building Materials. 205 (2019) 387-397 https://doi.org/10.1016/j.conbuildmat.2019.02.039.
DOI: 10.1016/j.conbuildmat.2019.02.039
Google Scholar
[14]
X. Cheng. Q. Dong. Y. Ma. C. Zhang. X. Gao. Y. Yu. Z. Wen. C. Zhang. X. Guo. Mechanical and thermal properties of aluminate cement paste with blast furnace slag at high temperatures. Construction and Building Materials. 228 (2019) 116747. https://doi.org/10.1016/j.conbuildmat.2019.116747.
DOI: 10.1016/j.conbuildmat.2019.116747
Google Scholar
[15]
B.S. Cho. H. Ha Lee. Y. C.Choi. Effects of aluminate rich slag on compressive strength. drying shrinkage and microstructure of blast furnace slag cement. Construction and Building Materials. 140 (2017) 293-300. https://doi.org/10.1016/j.conbuildmat.2017.02.111.
DOI: 10.1016/j.conbuildmat.2017.02.111
Google Scholar
[16]
A. Mladenovič. B. Mirtič. A. Meden. V.Z. Serjun. Calcium aluminate rich secondary stainless steel slag as a supplementary cementitious material. Construction and Building Materials 116 (2016) 216-225. https://doi.org/10.1016/j.conbuildmat.2016.04.141.
DOI: 10.1016/j.conbuildmat.2016.04.141
Google Scholar