Investigation of the Fluxing Additives Effect on the Foaming of Different Silicate Raw Materials

Article Preview

Abstract:

The main trends in the use of silicate raw materials for the production of heat-insulating materials are considered. It is shown that the introduction of modifying additives-fluxes is promising to reduce the energy intensity of the technology. The substances that play the role of fluxes in the silicate industry are selected. The most active fluxes were chosen - sodium tetraborate Na2B4O7 (borax) and sodium fluoride NaF. The mechanism of their melting effect on the silicate mass is investigated. It is shown that both borax and sodium fluoride are active fluxes, intensifying the melting of silicate raw materials of all types. The use of fluoride is hampered by a narrow temperature range, in which the formation of a stable porous structure is possible.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

767-774

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. König, R.R. Petersen, N. Iversen, Y. Yue, Suppressing the effect of cullet composition on the formation and properties of foamed glass, Ceram. Int. 44 (2018) 11143-11150.

DOI: 10.1016/j.ceramint.2018.03.130

Google Scholar

[2] A. Ayadi, N. Stiti, K. Boumchedda et al., Elaboration and characterization of porous granules based on waste glass, Powder Technol. 208 (2011) 423-426.

DOI: 10.1016/j.powtec.2010.08.038

Google Scholar

[3] F. Méar, P. Yot, M. Ribes, Effects of temperature, reaction time and reducing agent content on the synthesis of macroporous foam glasses from waste funnel glasses, Mater. Lett. 60 (2006) 929-934.

DOI: 10.1016/j.matlet.2005.10.046

Google Scholar

[4] J. König, R.R. Petersen, Y. Yue, Influence of the glass particle size on the foaming process and physical characteristics of foam glasses, J. Non-Cryst. Solids 447 (2016) 190-197.

DOI: 10.1016/j.jnoncrysol.2016.05.021

Google Scholar

[5] A.S. Llaudis, M. Tari, F. Garcıa Ten et al., Foaming of flat glass cullet using Si3N4 and MnO2 powders, Ceram. Int. 35 (2009) 1953-1959.

DOI: 10.1016/j.ceramint.2008.10.022

Google Scholar

[6] H.R. Fernandes, D.U. Tulyaganov, J.M. Ferreira, Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents, Ceram. Int. 35 (2009) 229-235.

DOI: 10.1016/j.ceramint.2007.10.019

Google Scholar

[7] J. Bai, X. Yang, S. Xu et al., Preparation of foam glass from waste glass and fly ash, Mater. Lett. 136 (2014) 52-54. http://dx.doi.org/10.1016/j.matlet.2014.07.028.

DOI: 10.1016/j.matlet.2014.07.028

Google Scholar

[8] B. Chen, K. Wang, X. Chen, A. Lu, Study of Foam Glass with High Content of Fly Ash Using Calcium Carbonate as Foaming Agent, Mater. Lett. 79 (2012) 263-265.

DOI: 10.1016/j.matlet.2012.04.052

Google Scholar

[9] J. Li, X. Zhuang, E. Monfort et al., Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features, Constr. Build. Mat. 175 (2018) 64-76.

DOI: 10.1016/j.conbuildmat.2018.04.158

Google Scholar

[10] A.A. Reka, B. Pavlovski, P. Makreski, New optimized method for low-temperature hydrothermal production of porous ceramics using diatomaceous earth, Ceram. Int. 43 (2017) 12572–12578. 11] O.V. Kazmina, A.Y. Tokareva, V.I. Vereshchagin, Using quartzofeldspathic waste to obtain foamed glass material, Resource-Efficient Technol. 2 (2016) 23-29.

DOI: 10.1016/j.ceramint.2017.06.132

Google Scholar

[12] S. Hashemini, A. Nemati, B.E. Yekta, P. Alizadeh, Preparation and characterisation of diopside-based glass–ceramic foams, Ceram. Int. 38 (2012) 2005-2010.

DOI: 10.1016/j.ceramint.2011.10.035

Google Scholar

[13] B.M. Goltsman, L.A. Yatsenko, N.S. Goltsman, Production of foam glass materials from silicate raw materials by hydrate mechanism, Solid State Phenom. 299 (2020) 293-298.

DOI: 10.4028/www.scientific.net/ssp.299.293

Google Scholar

[14] B.M. Gol'tsman, E.A. Yatsenko, N.Y. Komunzhieva et al., Effect of Fluxes on the Synthesis of Porous Materials Based on Native Silicate Raw Material, Glass Ceram. 77 (2020) 240-244.

DOI: 10.1007/s10717-020-00279-4

Google Scholar

[15] Ya.I. Vaisman, A.A. Ketov, Yu.A. Ketov, Cellular glass obtained from non-powder preforms by foaming with steam, Ceram. Int. 42 (2016) 15261-15268.

DOI: 10.1016/j.ceramint.2016.06.165

Google Scholar

[16] R. Silva, E. Kubaski, E. Tenório-Neto et al., Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix, J. Non-Cryst. Solids 511 (2019) 177-182.

DOI: 10.1016/j.jnoncrysol.2019.02.003

Google Scholar

[17] E.A. Yatsenko, B.M. Goltsman, L.A. Yatsenko, Investigation of the raw materials' composition and ratio influence on the structure and properties of the foamed slag glass, Mater. Sci. Forum 843 (2016) 183-188.

DOI: 10.4028/www.scientific.net/msf.843.183

Google Scholar

[18] A.P. Zubekhin et al., Fundamentals of Technology of Refractory Non-Metallic and Silicate Materials [in Russian], KARTEK, Moscow, (2010).

Google Scholar

[19] Yu.M. Butt, G.N. Duderov, M.A. Matveev, General Technology of Silicates [in Russian], third ed., Stroyizdat, Moscow, (1976).

Google Scholar

[20] A.A. Appen, Chemistry of Glass [in Russian], Khimiya, Moscow, (1974).

Google Scholar

[21] J.E. Shelby, Introduction to Glass Science and Technology, second ed., The Royal Society of Chemistry, Cambridge, (2005).

Google Scholar

[22] B.M. Goltzman, E.A. Yatsenko, V.S. Gerashchenko et al., Porous Heat-Insulating Materials Based on Various Types of Siliceous Raw Materials, Univ. News. North-Caucas. Reg. Technical Sciences Series. 1 (2020) 55-60. http://dx.doi.org/10.17213/1560-3644-2020-1-55-60.

DOI: 10.17213/1560-3644-2020-1-55-60

Google Scholar

[23] H. Wang, K. Feng, Y. Zhou et al., Effects of Na2B4O7·5H2O on the properties of foam glass from waste glass and titania-bearing blast furnace slag, Mater. Lett. 132 (2014) 176–178.

DOI: 10.1016/j.matlet.2014.06.018

Google Scholar

[24] Y. Li, X. Cheng, W. Cao et al., Development of adiabatic foam using sodium silicate modified by boric acid, J. Alloys Compd. 666 (2016) 513–519. http://dx.doi.org/10.1016/j.jallcom.2016.01.139.

DOI: 10.1016/j.jallcom.2016.01.139

Google Scholar

[25] Q. Zhang, F. He, H. Shu et al., Preparation of high strength glass ceramic foams from waste cathode ray tube and germanium tailings, Constr. Build. Mat. 111 (2016) 105–110.

DOI: 10.1016/j.conbuildmat.2016.01.036

Google Scholar

[26] L. Ding, W. Ning, Q. Wang et al., Preparation and characterization of glass–ceramic foams from blast furnace slag and waste glass, Mater. Lett. 141 (2015) 327–329.

DOI: 10.1016/j.matlet.2014.11.122

Google Scholar

[27] N.N. Potapov et al., Welding consumables for arc welding Vol. 1. Shielding gases and welding fluxes [in Russian], Mashinostroyeniye, Moscow, (1989).

DOI: 10.3403/00345670

Google Scholar

[28] R.L. Müller, The nature of activation energy and experimental data on the fluidity of refractory glass-forming substances, J. Appl. Chem. of the USSR, 28 (1955) 363.

Google Scholar

[29] J.O'M. Bockris, J.D. Mackenzie, J.A. Kitchener, Viscous flow in silica and binary liquid silicates, Trans. Faraday Soc. 51 (1955) 1734.

DOI: 10.1039/tf9555101734

Google Scholar

[30] T. Baak, The action of calcium fluoride in slags, in: The physical chemistry of steelmaking, Chipman and Hall, London, (1958).

Google Scholar

[31] J.O'M. Bockris, J.W. Tomlinson, J.L. White, The structure of the liquid silicates. Part II: molar volumes and expansivities, Trans. Faraday Soc. 52 (1956) 299.

DOI: 10.1039/tf9565200299

Google Scholar

[32] L.N. Kogarko, L.D. Krigman Fluorine in silicate melts and magmas [in Russian], Nauka, Moscow, (1981).

Google Scholar