[1]
M.S. Reisch, Cyanide glitters for some. Use of the deadly chemical is on the rise in the gold mining industry, Chem Eng News. 95 (39) (2017) 18-19.
Google Scholar
[2]
J. Baxter, S.P. Cummings, The current and future applications of microorganism in the bioremediation of cyanide contamination, Antonie Van Leeuwenhoek. 90 (1) (2006) 1-17.
DOI: 10.1007/s10482-006-9057-y
Google Scholar
[3]
A. Cosmos, B. O. Erdenekhuyag, G. Yao, H. Li, J. Zhao, W. Laijun, X. Lyu, Principles and methods of bio detoxification of cyanide contaminants, Journal of Material Cycles and Waste Management. 22 (2020) 939-954.
DOI: 10.1007/s10163-020-01013-6
Google Scholar
[4]
M. Barclay, V.A. Tett, C.J. Knowles, Metabolism and enzymology of cyanide / metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions, Enzym Microb Technol. 23 (1998) 321-330.
DOI: 10.1016/s0141-0229(98)00055-6
Google Scholar
[5]
M.N. Maniyam, F. Sjahrir, A.L. Ibrahim, A.E.G Cass, Biodegradation of cyanide by Rhodococcus UKMP-5M, Biologia. 68 (2) (2013) 177-185.
DOI: 10.2478/s11756-013-0158-6
Google Scholar
[6]
Z. Khamar, A. Makhdoumi-Kakhki, M.H. Mahmudy Gharaie, Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture, Int Biodeter Biodegr. 99 (2015) 123-128.
DOI: 10.1016/j.ibiod.2015.01.009
Google Scholar
[7]
L. Mekuto, O.O. Alegbeleye, S.K.O. Ntwampe, M.M. Ngongang, J.B. Mudumbi, E.A. Akinpelu, Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions, 3Biotech. 6 (2) (2016) 1-11.
DOI: 10.1007/s13205-016-0491-x
Google Scholar
[8]
F. Acera, M.I. Carmona, F. Castillo, A. Quesada, R. Blasco, A cyanide-induced 3-cyanoalanine nitrilase in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes strain CECT 5344, Appl Environ Microbiol. 83 (9) (2017) e00089-17.
DOI: 10.1128/aem.00089-17
Google Scholar
[9]
L.C. Razanamahandry, H. Karoui, H.A. Andrianisa, H. Yacouba, Bioremediation of soil and water polluted by cyanide: a review, African Journal of Environmental Science and Technology. 11 (6) (2017) 272-291.
Google Scholar
[10]
R. Kumar, S. Saha, S. Dhaka, M. Kurade, C.-U. Kang, S. H. Baek, B.-H. Jeon, Remediation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives, Geosystem Engineering. 20 (1) (2017) 1-13.
DOI: 10.1080/12269328.2016.1218303
Google Scholar
[11]
E.A. Akinpelu, A.T. Adetunji, S.K.O. Ntwampe, F. Nchu, L. Mekuto, Performance of Fusarium oxysporum EKT01/02 isolate in cyanide biodegradation system, Environmental Engineering Research. 23 (2) (2018) 223-227.
DOI: 10.4491/eer.2017.154
Google Scholar
[12]
T.C. Bhalla, V. Kumar, V. Kumar, N. Thakur, Savitri, Nitrile metabolizing enzymes in biocatalysis and biotransformation, Appl Biochem Biotechnol. 185 (4) (2018) 925-946.
DOI: 10.1007/s12010-018-2705-7
Google Scholar
[13]
U. Singh, N.K. Arora, P. Sachan Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri, Braz J Microbiol. 49 (1) (2018) 38-44.
DOI: 10.1016/j.bjm.2016.12.013
Google Scholar
[14]
M. Sharma, Y. Akhter, S. Chatterjee, A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation, World Journal of Microbiology and Biotechnology. 35 (5) (2019) 70.
DOI: 10.1007/s11274-019-2643-8
Google Scholar
[15]
J.F. Leslie, B.A. Summerell, The Fusarium laboratory manual, USA, Blackwell Publishing, (2006).
Google Scholar
[16]
E. Asmus, H. Garschagen, The use of barbituric acid for the photometric determination of cyanide and thiocyanate Z, Anal. Chem. 138 (1953) 414-422.
Google Scholar