Hydrogen Sulphide in Industrial Enterprises Water Management Infrastructure - The Factor of Chemical and Microbiological Corrosion Concrete Degradation of Water Facilities

Article Preview

Abstract:

The durability of concrete, the material which is widely used for water facilities depends on accumulation in operational environments (drain water, air-gas space) of hydrogen sulfide. Now the mechanism of corrosion destruction of concrete in drainage pipelines is represented as result of biogenous sulphuric acid aggression – influence of the sulphuric acid formed by thionic bacteria. The analysis of data on H2S concentration in drain waters of various industrial enterprises demonstrates that they create in gaseous operational media H2S concentration, sufficient for development in aerobic conditions of thionic bacteria. As the results of urban sewer networks inspection have shown, the correlation between concentration of H2S in aqueous phase and its concentration in air environment, between concentration of H2S in air environment and the corrosion rate of concrete’s coffering part is observed. Chemical and X-ray crystallography of this concrete showed that in corrosive concrete decreases pH, reaching in some examples of values 1-2, and sulfates collect. In dynamics of corrosion process the exponential growth of concentration in concrete of extremely acidophilic thionic bacteria is noted.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

401-406

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.Ya. Kofman, Serovodorod i metan v kanalizacionnyx setyax (obzor), Vodosnabzhenie i sanitarnaya texnika. 11 (2012) (in Russian).

Google Scholar

[2] S.V. Fedorov, V.M. Vasil`ev, M.N. Klementev, Issledovanie gazovydeleniya na uchastke kanalizacionnoj seti, Vodosnabzhenie i sanitarnaya texnika. 5 (2019) (in Russian).

Google Scholar

[3] I. Valentina, L. Elena, B. Elena, Environmental Safety of the Sewage Disposal by the Sewerage Pipelines, Transbaltica-2015. Procedia Engineering. 134 (2016) 181-186.

DOI: 10.1016/j.proeng.2016.01.058

Google Scholar

[4] G.Ya. Drozd, N.I. Zotov, V.N. Maslak, Kanalizacionnye truboprovody: nadezhnost, diagnostika, sanaciya, Doneczk: IEP NAN, Ukrainy, 2003. (in Russian).

Google Scholar

[5] V.A. Yurchenko, E.V. Brigada, Kineticheskie xarakteristiki mikrobiologicheskoj korrozii betona v setyax vodootvedeniya, Voda i ekologiya. Problemy i resheniya. 1 (2014) 51-61 (in Russian).

Google Scholar

[6] G. Dmitri, G. Alexei, B. Dmitri, Z. Gennadii, On renovation of the destroyed tunnel sewer collector in Kharkov, World journal of Tngineering. 13 (2016) 72-76.

Google Scholar

[7] N.K. Rozental, Korroziya i zashhita betonnyx i zhelezobetonnyx konstrukcij sooruzhenij ochistki stochnyx vod, Beton i zhelezobeton. Oborudovanie, materialy, texnologiya. 1 (2011) 96-103. (in Russian).

Google Scholar

[8] L.N. Fesenko, A.Yu. Cherkesov, S.I. Ignatenko, Metody udaleniya serovodoroda iz proizvodstvenny`x stochny`x vod i puti ix razvitiya, Voda Magazine. 2 (102) (2016) https://watermagazine.ru/nauchnye-stati2/novye-stati/24763-metody-udaleniya-serovodoroda-iz-proizvodstvennykh-stochnykh-vod-i-puti-ikh-razvitiya.html. (in Russian).

Google Scholar

[9] A.S. Vinogradova, Yu.V. Trofimenko, Metody ochistki stochnyx vod ot serovodoroda na proizvodstvennyx uchastkax avtoservisa, Nauchnoe obozrenie. Pedagogicheskie nauki. 2-3 (2019) 19-21. (in Russian).

Google Scholar

[10] R.Z. Saxabutdinov, Rrazrabotka texnologicheskix processov sbora, podgotovki i transportirovki uglevodorodnogo syrya s minimalnymi poteryami uglevodorodov i vybrosami vrednyx veshhestv v atmosferu. diss… doktora texn. nauk: 25.00.17. Tatarskij nauchno-issledovatelskij i proektnyj institut nefti, Bugulma, 2001. (in Russian).

Google Scholar

[11] F.A. Agzamov, L.N. Lomakina, N.B. Hababutdinova, R.F. Davletshin, A.K. Kriga, T.V. Tokunov, Cement stone corrosion processes affected by acidulous components of bedded fluids, Геология. Геофизика. Бурение. 13(4) (2015).

Google Scholar

[12] V.M. Vasilev, G.A. Pankova, Yu.V. Stolbixin, Razrushenie kanalizacionny`x tonnelej i sooruzhenij na nix vsledstvie mikrobiologicheskoj korrozii, Vodosnabzhenie i sanitarnaya texnika. 9 (2013) 67-76. (in Russian).

Google Scholar

[13] A.Yu. Cherkesov, Ochistka sernisto-shchelochnykh stochnykh vod nefteorgsinteza ot serovodoroda: dis. kand. tekhn. nauk [Purification of Sulfurous-Alkaline Waste Waters of Petroleum Synthesis from Hydrogen Sulfide: Cand. Engin. Sci. Diss.], , Novocherkasskii politekhnicheskii universitet Publ. Novocherkassk. 2014. [in Russian].

Google Scholar

[14] D.G. Zvyagintsev, Methods of soil microbiology and biochemistry, Ed. Moscow, Moscow State University. Moscow, 1991. (in Russian).

Google Scholar

[15] Unificirovanny`e metody issledovaniya kachestva vod. Metody ximicheskogo analiza vod, Moscow, 1987. 662. (in Russian).

Google Scholar

[16] L.N. Popov, Laboratornye ispytaniya stroitelnyx materialov i izdelij, Vysshaya shkola, Moscow, 1984. (in Russian).

Google Scholar

[17] A.A. Usyk, I.L. Derkach, E.A. Shishkin Issledovanie processa massoperenosa serovodoroda v sisteme «gaz-zhidkost», Kommunalnoe xozyajstvo gorodov. 93 (2010) 414-421. (in Russian).

Google Scholar