Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion

Article Preview

Abstract:

The main aims of this study are to assess numerically the stress state of a solid wall which is installed at the hydrogen fueling station in order to protect personnel from the consequences of the accidental hydrogen explosion, define the bending stress values in the foot of the wall exposed to explosion wave pressure forces and located at different distances from explosion epicenter in order to choose appropriate construction material of the wall and assess the minimum thickness of the wall satisfying bending strength condition. A three-dimensional mathematical model of hydrogen-air mixture explosion is used to define the distribution of the maximum overpressure on the wall surface. To assess the bending stress state at the foot of the wall, the design scheme of a cantilever beam is considered. It is assumed that the maximum overpressure force field influences the wall at the same time to assess the worst possible scenario. Actually, the computer-based methodology of how to resolve a coupled problem of explosion gas dynamics and defense wall strength is suggested. This technique allows evaluating of the construction parameters of the wall, which protects the personnel against consequences of the explosion wave exposure, without the destruction of the wall.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Y. Dreval, V. Loboichenko, A. Malko, A. Morozov, S. Zaika, V. Kis. The Problem of Comprehensive Analysis of Organic Agriculture as a Factor of Environmental Safety, J. Environ. Clim. Technol. 24 (2020) 58–71.

DOI: 10.2478/rtuect-2020-0004

Google Scholar

[2] Safety and Security Analysis: Investigative Report by NASA on Proposed EPA Hydrogen-Powered Vehicle Fueling Station. Assessment and Standards Division Office of Transportation and Air Quality U.S. Environment Protection Agency, EPA420-R-04-016 October 2004. 45 p.

Google Scholar

[3] A. Kovalov, Y. Otrosh, O. Ostroverkh, O. Hrushovinchuk, O. Savchenko. Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences. 60, 00003 (2018). https://doi.org/10.1051/e3sconf/20186000003.

DOI: 10.1051/e3sconf/20186000003

Google Scholar

[4] Y. Otrosh, A. Kovalov, O. Semkiv, I. Rudeshko, V. Diven. Methodology remaining lifetime determination of the building structures. MATEC Web of Conferences. 230, 02023 (2018). https://doi.org/10.1051/matecconf/201823002023.

DOI: 10.1051/matecconf/201823002023

Google Scholar

[5] A. Kovalov, Y. Otrosh, M. Surianinov, T. Kovalevska. Experimental and Computer Researches of Ferroconcrete Floor Slabs at High-Temperature Influences. Materials Science Forum. 968 (2019) 361-367.

DOI: 10.4028/www.scientific.net/msf.968.361

Google Scholar

[6] A. Kovalov, Y. Otrosh, S. Vedula, О. Danilin, T. Kovalevska. Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors. Scientific Bulletin of National Mining University. 3 (2019) 46-53.

DOI: 10.29202/nvngu/2019-3/9

Google Scholar

[7] Y. Otrosh, M. Surianinov, A. Golodnov, O. Starova. Experimental and Computer Researches of Ferroconcrete Beams at High-Temperature Influences. Materials Science Forum. 968 (2019) 355-360.

DOI: 10.4028/www.scientific.net/msf.968.355

Google Scholar

[8] Y. Otrosh, O. Semkiv, E. Rybka, A. Kovalov. About need of calculations for the steel framework building in temperature influences conditions. Materials Science and Engineering. 708 (2019) 012065.

DOI: 10.1088/1757-899x/708/1/012065

Google Scholar

[9] M. Surianinov, V. Andronov, Y. Otrosh, T. Makovkina, S. Vasiukov. Concrete and Fiber Concrete Impact Strength. In Materials Science Forum. Trans Tech Publications Ltd. 1006 (2020) 101-106.

DOI: 10.4028/www.scientific.net/msf.1006.101

Google Scholar

[10] Y. Skob, M. Ugryumov, Y. Dreval. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum. 1006 (2020) 117-122.

DOI: 10.4028/www.scientific.net/msf.1006.117

Google Scholar

[11] H. Schneider. Large Scale Experiments: Deflagration and Deflagration to Detonation within a partial Confinement similar to a lane. Proc. of International Conference on Hydrogen Safety. Pisa (Italy). 2005. 10 p.

Google Scholar

[12] Y. Skob, M. Ugryumov, E. Granovskiy, Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies, J. Environ. Clim. Technol. 23 (2019) 1-14.

DOI: 10.2478/rtuect-2019-0075

Google Scholar

[13] Y. Skob, M. Ugryumov, E. Granovskiy. Numerical assessment of hydrogen explosion consequences in a mine tunnel, Int. J. Hydrog. Energy. 2020. https://doi.org/10.1016/j.ijhydene .2020.09.067.

DOI: 10.1016/j.ijhydene.2020.09.067

Google Scholar

[14] E. A. Granovskiy, V. A. Lyfar, Yu. A. Skob, M. L. Ugryumov, Computational Modeling of Pressure Effects from Hydrogen Deflagrations // Proc. of 2-nd International Conference on Hydrogen Safety. San Sebastian (Spain). 2007. 15 p.

Google Scholar