Investigation of Gas Formation Processes in Cotton Fabrics Impregnated with Binary Compositions of Ethyl Silicate - Flame Retardant System

Article Preview

Abstract:

The use of complex fire-retardant coatings based on ethyl silicate gel - diammonium hydrogen phosphate reduces the process of smoke formation during thermal exposure to treated tissue samples, which is promising for improving the fire safety of textile materials. The compositions are easy to obtain, they do not require specific processing conditions, do not contain toxic substances. This allows us to offer developed compositions for fire protection of textile materials used in facilities with a large number of people.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

460-467

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Handbook of Fire Resistant Textiles, ed. by F.S. Kilinc, Woodhead Publishing Series in Textiles. (2013).

DOI: 10.1016/b978-0-85709-123-9.50027-4

Google Scholar

[2] A.R. Horrocks, Developments in flame retardants for heat and fire resistant textiles – the role of char formation and intumescence, Polym Deg Stab. 54 (1996) 143–154.

DOI: 10.1016/s0141-3910(96)00038-9

Google Scholar

[3] O.L. Zav'yalova, T.V. Kostenko, D.A. Zhurbinsʹkyy, Obgruntuvannya vyboru materialiv dlya vyhotovlennya spetsialʹnoho zakhysnoho odyahu ryatuvalʹnykiv vid pidvyshchenoho teplovoho vplyvu, Visti Donetsʹkoho hirnychoho instytutu. 2 (2016) 125–134.

Google Scholar

[4] R.M. Kozłowski, M. Muzyczek 2 - Improving the flame retardancy of natural fibres, in: Handbook of Natural Fibres Processing and Applications, Woodhead Publishing Series in Textiles, 2 (2012) p.30–62.

DOI: 10.1533/9780857095510.1.30

Google Scholar

[5] J. Alongi, A. Frache, G. Malucelli, G. Camino, Multi-component flame resistant coating techniques for textiles, in: Handbook of Fire Resistant Textiles, 2013, p.68–93.

DOI: 10.1533/9780857098931.1.68

Google Scholar

[6] A.V. Zhurko, R.N. Khelevin, G.V. Utkin, E.V. Shatalov, S.P. Nikitayev, I.P. Shelyapin Ognestoykiy tekstil'nyy materialPatent RF 2,294,414. (2007).

Google Scholar

[7] M.Y. Wang, A.R. Horrocks, S. Horrocks, M.E. Hall, J.S. Pearson, S. Clegg, Flame retardant textile back-coatings. Part 1: Antimony-halogen system interactions and the effect of replacement by phosphorus-containing agents, J Fire Sci. 18 (2000) 265–294.

DOI: 10.1106/16wq-nmxn-em6q-gdw9

Google Scholar

[8] J.  Alongi, C. Colleoni, G. Rosace, G. Malucelli, Phosphorus- and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: Synergisms or additive effects? Polymer Degradation and Stability. 98 (2) (2013) 579–589.

DOI: 10.1016/j.polymdegradstab.2012.11.017

Google Scholar

[9] Akio Nodera, Toshitaka Kanai, Flame retardancy of polycarbonate–polydimethylsiloxane block copolymer/silica nanocomposites, Journal of Applied Polymer Science. 101 (6) (2006).

DOI: 10.1002/app.24191

Google Scholar

[10] Sevim Karataş, Zuhal Hoşgör, Nilhan Kayaman-Apohan, Atilla Güngör, Preparation and characterization of phosphine oxide containing organosilica hybrid coatings by photopolymerization and sol–gel process, Progress in Organic Coatings. 65 (1) (2009), 49–55.

DOI: 10.1016/j.porgcoat.2008.09.022

Google Scholar

[11] S.V. Levchik, E.D. Weil Developments in phosphorus flame retardants, Advances in Fire Retardant Materials. 2 (2008) 41–66.

DOI: 10.1533/9781845694701.1.41

Google Scholar

[12] A.R. Horrocks, Flame retardant finishes, Rev Prog Colour. 16 (1986) 62–101.

Google Scholar

[13] A.R. Horrocks Flame retardant finishes and finishing, in Textile Finishing, Society of Dyers and Colourists, Bradford, 2003 p.214–250.

Google Scholar

[14] A.M. Emsley, G.C. Stevens The risks and benefits of flame retardants in consumer products, in Advances in Fire Retardant Materials, Woodhead Publishing, Cambridge, 2008 p.364–397.

DOI: 10.1533/9781845694701.3.363

Google Scholar

[15] R. Dombrowski, Flame retardants for textile coatings, J. Coated Fabrics. 25(1996) 224–238.

DOI: 10.1177/152808379602500306

Google Scholar

[16] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition, Materials Science Forum. 1006(2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[17] O. Skorodumova, O. Tarakhno, O. Chebotaryova, Y. Hapon, F.M. Emen, Formation of fire retardant properties in elastic silica coatings for textile materials, Materials Science Forum. 1006 (2020) 25–31.

DOI: 10.4028/www.scientific.net/msf.1006.25

Google Scholar

[18] O.B. Skorodumova, G.D. Semchenko, Y.N. Goncharenko, V.S. Tolstoi, Crystallization of SiO2 from ethylsilicate-based gels, Glass and Ceramics (English translation of Steklo i Keramika). 58 (1-2) (2001) 31–33.

DOI: 10.1023/a:1010933028152

Google Scholar

[19] O. Skorodumova, O. Tarakhno, O. Chebotaryova, M. Skripnik, The use of organosilicon raw materials of a technical level of purity to obtain binary protective coatings on fabric in the SiO2 sol – flame retardant system, Fire safety problems. 47 (2020) 112–119.

Google Scholar