The Use of Sol-Gel Method for Obtaining Fire-Resistant Elastic Coatings on Cotton Fabrics

Article Preview

Abstract:

Based on the generalization of research results on the processes of obtaining SiO2 sols using tetraethoxysilane and ethyl silicates, the main factors influencing the elasticity of silica coatings on cotton fabrics and their fire-retardant properties are considered. The possibility of forming covalent bonds between the functional groups of cellulose, gel coating and flame retardant layer is considered, which explains the strong fixation of a thin layer of coating on the fibers of the fabric and improve its fire protection. The use of the developed compositions for fire-retardant elastic coatings based on ethyl silicate allows to increase the time of complete burning of cotton from 30s (untreated fabric) to 600s (treated with binary coating).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

468-479

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Brancatelli, C. Colleoni, M.R. Massafra, G. Rosace, Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics, Polymer Degradation and Stability. 96 (4) (2011) 483–490.

DOI: 10.1016/j.polymdegradstab.2011.01.013

Google Scholar

[2] B.J.J. Zelinski, D.R. Uhlmann, Gel technology in ceramics, J. Phys. and Chem. Solids. 45 (10) (1984) 1069-1090.

DOI: 10.1016/0022-3697(84)90049-0

Google Scholar

[3] S. Sakka, Sol–gel science and technology. Topics and fundamental research and applications. Kluwer Academic Publishers, Norwell, (2003).

Google Scholar

[4] Y.N. Goncharenko, O.B. Skorodumova, D.S. Pushkar', G.D. Semchenko, Preparation of silica fillers for stomatologic composite materials, Refractories and Industrial Ceramics. 42 (9–10) (2001) 307–309.

DOI: 10.1023/a:1014069109343

Google Scholar

[5] C.L. Chiang, R.C. Chang, Synthesis, characterization and properties of novel self-extinguish organic-inorganic nanocomposites containing nitrogen, silicon and phosphorus via sol–gel method, Composites Science and Technology. 68 (14) (2008) 2849–2857.

DOI: 10.1016/j.compscitech.2007.10.017

Google Scholar

[6] C.L. Chiang C.C.M. Ma, D.L. Wu, H.C. Kuan, Preparation, characterization and properties of novolac-type phenolic/SiO2 hybrid organic-inorganic nanocomposite materials by sol–gel method, Journal of Polymer Science Part A: Polymer Chemistry. 41 (7) (2003) 905–9 13.

DOI: 10.1002/pola.10624

Google Scholar

[7] C.L. Chiang, S.L. Chiu, Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/silicon prepared from the sol–gel method, Journal of Polymer Research. 16(6) (2009) 637–646.

DOI: 10.1007/s10965-009-9268-9

Google Scholar

[8] B. Mahltig, H. Buttcher, H. Rauch, U. Dieckman, R. Nitsche, T. Fritz, Optimized UV protecting coatings by combination of organic and inorganic UV absorbers, Thin Solid Films. 48 (1–2) (2005) 108–114.

DOI: 10.1016/j.tsf.2005.03.056

Google Scholar

[9] F.Y. Li, Y.J. Xing, X. Ding, Y. Zu, Immobilization of papa in on cotton fabric by sol–gel method, Enzyme and Microbial Technology. 40 (7) (2007) 1692–1697.

DOI: 10.1016/j.enzmictec.2006.09.007

Google Scholar

[10] A.R. Horrocks, High Performance Textiles and their Applications, Woodhead Publishing Series in Textiles, (2014).

Google Scholar

[11] A.C. Cireli, N. Onar, M.F. Ebeoglugil, I. Kayatekin, N. Kutlu, O. Culha, E. Celik Development of flame retardancy properties of new halogen-free phosphorous doped SiO2 thin films on fabrics, Journal of Applied Polymer Science. 105 (6) (2007) 3747–3756.

DOI: 10.1002/app.26442

Google Scholar

[12] S. Hribernik, M.S. Smole, K.S. Kleinschek, M. Bele, J. Jamink, M. Gaberscek Flame retardant of SiO2-coated regenerated cellulose fibres, Polymer Degradation and Stability. 92 (11) (2007) 1957–(1965).

DOI: 10.1016/j.polymdegradstab.2007.08.010

Google Scholar

[13] N. Yaman, Preparation and flammability properties of hybrid materials containing phosphorous compounds via sol–gel process, Fibers and Polymers. 10 (4) (2009) 413–418.

DOI: 10.1007/s12221-009-0413-1

Google Scholar

[14] J. Alongi, M. Ciobanu, G. Malucelli, Cotton fabrics treated with hybrid organic–inorganic coatings obtained through dual-cure processes, Cellulose. 18 (2011) 1335–1348.

DOI: 10.1007/s10570-011-9564-5

Google Scholar

[15] J. Tata, J. Alongi, F. Carosio, A. Frache, Optimization of the procedure to burn textile fabrics by cone calorimeter: part I. Combustion behavior of polyester, Fire and Materials. 35 (2011) 397–409.

DOI: 10.1002/fam.1061

Google Scholar

[16] J. Alongi, M. Ciobanu, G. Malucelli, Sol–gel treatments on cotton fabrics for improving thermal and flame stability: effect of the structure of the alkoxysilane precursor, Carbohydrate Polymers. 87 (1) (2012) 627– 635.

DOI: 10.1016/j.carbpol.2011.08.036

Google Scholar

[17] J. Alongi, M. Ciobanu, G. Malucelli, Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes, Carbohydrate Polymers. 87(3) (2012) 2093–(2099).

DOI: 10.1016/j.carbpol.2011.10.032

Google Scholar

[18] O. Skorodumova, O. Tarakhno, O. Chebotaryova, Y. Hapon, F.M. Emen, Formation of fire retardant properties in elastic silica coatings for textile materials, Materials Science Forum. 1006 (2020) 25–31.

DOI: 10.4028/www.scientific.net/msf.1006.25

Google Scholar

[19] O.B. Skorodumova, G.D. Semchenko, Y.N. Goncharenko, V.S. Tolstoi, Crystallization of SiO2 from ethylsilicate-based gels, Glass and Ceramics (English translation of Steklo i Keramika).  58 (1-2) (2001) 31–33.

DOI: 10.1023/a:1010933028152

Google Scholar

[20] O. Skorodumova, O. Tarakhno, O. Chebotaryova, M. Skripnik, The use of organosilicon raw materials of a technical level of purity to obtain binary protective coatings on fabric in the SiO2 sol – flame retardant system, Fire safety problems. 47 (2020) 112–119.

Google Scholar