Development of Scientific Fundamentals for the Conversion of a Virtual Binary Lead Selenide Ferroelectric into a Real Ferroelectric of Lead Selenite for Physico-Chemical Sensors

Article Preview

Abstract:

The scientific basis for the production of a new composite material (1-x)PbSexPbSeO3, where x=0-1, by oxidation with oxygen at temperatures of 500-550 °C and oxidation times of 0.5-4 h from the initial phase of PbSe in the form of powder, film or compact material, having a ferroelectric phase transition in disordered crystals is developed. On the X-ray spectra of the original PbSe samples oxidized at 500°C (oxidation time of 0.5 h) it has been found that the PbSe phase reflexes are predominately present, including the X-ray spectra of the original PbSe samples oxidized at 500 °C (oxidation time of 4 h) - PbSeO3 monoclinic phase reflexes. For all other PbSe oxygen-oxidized samples at temperatures of 500-550 °C and within the time range of 0.5-4 h, X-ray spectra show the simultaneous presence of X-ray reflexes of both phases with the trend of increasing the PbSeO3 phase as the oxidation time increases. Temperature measurements of the DC resistance of the PbSe samples revealed an abnormal change in electrical resistance at the initial oxidation stage for both the film and the compact material, and further oxidation contributed to the capsulation of PbSe grains by the dielectric casing PbSeO3 and the gradual increase in the resistance of the material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1040)

Pages:

75-86

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Acharya, S. Mack, A. Fernandez, J. Kim, H. Wang, K. Eriguchi, D. Meyers, V. Gopalan, J. Neaton, L.W. Martin, Searching for New Ferroelectric Materials Using High-Throughput Databases: An Experimental Perspective on BiAlO3 and BiInO3, Chem. Mater. 32 (2020) 7274−7283.

DOI: 10.1021/acs.chemmater.0c01770

Google Scholar

[2] T.E. Smidt, S.A. Mack, S.E. Reyes-Lillo, A. Jain, J.B. Neaton, An automatically curated first-principles database of ferroelectrics, Sci Data 7 (2020) 72.

DOI: 10.1038/s41597-020-0407-9

Google Scholar

[3] T.Y. Kim, S.K. Kim, S.W. Kim, Application of ferroelectric materials for improving output power of energy harvesters, Nano Convergence 5 (2018) 30.

DOI: 10.1186/s40580-018-0163-0

Google Scholar

[4] S. Kim, N.T. Nguyen, C.W. Bark, Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting, Appl. Sci. 8 (2018) 1526.

DOI: 10.3390/app8091526

Google Scholar

[5] L.W. Martin, A.M. Rappe, Thin-film ferroelectric materials and their applications, Nature Reviews Materials 2 (2016) 1-14.

Google Scholar

[6] A. Gruverman, A. Kholkin, Nanoscale ferroelectrics: processing, characterization and future trends, Rep. Prog. Phys. 69 (2006) 2443–2474.

DOI: 10.1088/0034-4885/69/8/r04

Google Scholar

[7] M. Si, A.K. Saha, S. Gao, G. Qiu, J. Qin, Y. Duan, J. Jian, C. Niu, H. Wang, W. Wu, S.K. Gupta, P.D. Ye, A ferroelectric semiconductor field-effect transistor, Nat Electron. 2 (2019) 580–586.

DOI: 10.1038/s41928-019-0338-7

Google Scholar

[8] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, Ferroelectric thin films: Review of materials, properties, and applications, J. Appl. Phys. 100 (2006) 1-46.

DOI: 10.1063/1.2393042

Google Scholar

[9] A. Onodera, M. Takesada, Ferroelectricity in Simple Binary Crystals, Crystals 7 (2017) 232.

DOI: 10.3390/cryst7080232

Google Scholar

[10] D. Damjanovic, P. Murat, N. Setter, Ferroelectric Sensors, IEE Sensors Journal 1(3) (2001) 191-206.

Google Scholar

[11] M. Lallart, Ferroelectrics – Characterization and Modeling, Intech, Rijeka, (2011).

Google Scholar

[12] U. De, K.R. Sahu, A. De, Ferroelectric Materials for High Temperature Piezoelectric Applications, Solid State Phenomena 232 (2015) 235-278.

DOI: 10.4028/www.scientific.net/ssp.232.235

Google Scholar

[13] J. Valasek, Piezo-Electric and Allied Phenomena in Rochelle Salt, Phys. Rev. 17 (1921) 475-481.

DOI: 10.1103/physrev.17.475

Google Scholar

[14] B. Wul, Dielectric Constants of Some Titanates, Nature 156 (1945) 480.

DOI: 10.1038/156480a0

Google Scholar

[15] B. Wul, Barium Titanate: A New Ferro-Electric, Nature 157 (1946) 808.

DOI: 10.1038/157808a0

Google Scholar

[16] G.H. Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc. 82(4) (1999) 797–818.

Google Scholar

[17] P. Ghosez, J. Junquera, First-principles modeling of ferroelectric oxide nanostructures, in: B.S. M. Rieth, W. Schommers (Eds.), Handbook of Theoretical and Computational Nanotechnology, ASP, Stevenson Ranch, 2006, p.623–728.

Google Scholar

[18] M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, OUP Oxford, (2001).

Google Scholar

[19] V.V. Tomaev, L.L. Makarov, A.A. Solomennikov, P.A. Tikhonov, Oxidation Kinetics of Lead Selenide, Glass Physics and Chemistry 30(4) (2004) 349-355.

DOI: 10.1023/b:gpac.0000038709.80613.51

Google Scholar

[20] V.V. Tomaev, V.P. Miroshkin, L.N. Gar'kin, P.A. Tikhonov, Dielectric Properties and Phase Transition in the PbSe + PbSeO3 Composite Material, Glass Physics and Chemistry 31(6) (2005) 812-819.

DOI: 10.1007/s10720-005-0130-9

Google Scholar

[21] V.V. Tomaev, Ferroelectric Phase Transition in the PbSe + PbSeO3 Composite, Glass Physics and Chemistry 35(6) (2009) 660–667.

DOI: 10.1134/s1087659609060169

Google Scholar

[22] Y.I. Ravich, B.A. Efimova, I.A. Smirnov, Methods of Semiconductor Investigations in Application to Lead Chalcogenides PbTe, PbSe, PbS, Nauka, Moscow, (1978).

Google Scholar

[23] O.E. Kvyatkovskii, Microscopic theory of lattice instability in displacive type ferroelectrics, Ferroelectrics 153 (1994) 201-206.

DOI: 10.1080/00150199408016567

Google Scholar

[24] O.E. Kvyatkovskii, On Local-Field Effects in Semiconductors and Dielectrics, Fizika Tverdogo Tela 27(9) (1985) 2673–2682.

Google Scholar

[25] O. E. Kvyatkovskii, Dipole-Dipole Interactions in Crystals and Ferroelectric Properties of A4B6 Compounds, Fizika Tverdogo Tela 28(4) (1986) 983–990.

Google Scholar

[26] B.A. Volkov, O.A. Pankratov, Crystal structures and symmetry of the electron spectrum of IV-VI semiconductors, JETP 48(4) (1978).

Google Scholar

[27] B.A. Volkov, O.A. Pankratov, Electronic structure of point defects in A4B6 semiconductors, JETP 88(1) (1984) 280-293.

Google Scholar

[28] Information on http://database.iem.ac.ru/mincryst/.

Google Scholar

[29] S.T. Ueda, I. Kwak, A. Abelson, S. Wolf, C. Qian, M. Law, A.C. Kummel, Electronic passivation of PbSe quantum dot solids by trimethylaluminum vapor dosing, Applied Surface Science 513 (2020) 145812.

DOI: 10.1016/j.apsusc.2020.145812

Google Scholar

[30] F. Zhao, J. Ma, D. Li, S.L. Elizondo, Z. Shi, S. Mukherjee, Influence of oxygen passivation on optical properties of PbSe thin films, Appl. Phys. Lett. 92 (2008) 211110.

DOI: 10.1063/1.2938417

Google Scholar

[31] J.L. Peters, J.C. van der Bok, J.P. Hofmann, D. Vanmaekelbergh, Hybrid Oleate−Iodide Ligand Shell for Air-Stable PbSe Nanocrystals and Superstructures, Chem. Mater. 31 (2019) 5808−5815.

DOI: 10.1021/acs.chemmater.9b01891

Google Scholar

[32] V.M. Bakanov, Z.I. Smirnova, Kh.N. Mukhamedzyanov, L.N. Maskaeva, V.F. Markov, Thermosensitization of chemically deposited films of lead selenide, Condensed media and interphase boundaries 13(4) (2011) 401-408.

Google Scholar

[33] G. Bi, F. Zhao, J. Ma, S. Mukherjee, D. Li, Z. Shi, Modeling of the Potential Profile for the Annealed Polycrystalline PbSe Film, Piers Online 5(1) (2009) 245554452.

DOI: 10.2529/piers080906125457

Google Scholar

[34] F. Zhao, J. Ma, D. Li, S. Mukherjee, G. Bi, Z. Shi, Influence of Oxygen Post-Growth Annealing on Optical and Electrical Properties of PbSe Thin Films, Journal of Electronic Materials 38(8) (2009).

DOI: 10.1007/s11664-009-0824-1

Google Scholar