[1]
M. Acharya, S. Mack, A. Fernandez, J. Kim, H. Wang, K. Eriguchi, D. Meyers, V. Gopalan, J. Neaton, L.W. Martin, Searching for New Ferroelectric Materials Using High-Throughput Databases: An Experimental Perspective on BiAlO3 and BiInO3, Chem. Mater. 32 (2020) 7274−7283.
DOI: 10.1021/acs.chemmater.0c01770
Google Scholar
[2]
T.E. Smidt, S.A. Mack, S.E. Reyes-Lillo, A. Jain, J.B. Neaton, An automatically curated first-principles database of ferroelectrics, Sci Data 7 (2020) 72.
DOI: 10.1038/s41597-020-0407-9
Google Scholar
[3]
T.Y. Kim, S.K. Kim, S.W. Kim, Application of ferroelectric materials for improving output power of energy harvesters, Nano Convergence 5 (2018) 30.
DOI: 10.1186/s40580-018-0163-0
Google Scholar
[4]
S. Kim, N.T. Nguyen, C.W. Bark, Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting, Appl. Sci. 8 (2018) 1526.
DOI: 10.3390/app8091526
Google Scholar
[5]
L.W. Martin, A.M. Rappe, Thin-film ferroelectric materials and their applications, Nature Reviews Materials 2 (2016) 1-14.
Google Scholar
[6]
A. Gruverman, A. Kholkin, Nanoscale ferroelectrics: processing, characterization and future trends, Rep. Prog. Phys. 69 (2006) 2443–2474.
DOI: 10.1088/0034-4885/69/8/r04
Google Scholar
[7]
M. Si, A.K. Saha, S. Gao, G. Qiu, J. Qin, Y. Duan, J. Jian, C. Niu, H. Wang, W. Wu, S.K. Gupta, P.D. Ye, A ferroelectric semiconductor field-effect transistor, Nat Electron. 2 (2019) 580–586.
DOI: 10.1038/s41928-019-0338-7
Google Scholar
[8]
N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, Ferroelectric thin films: Review of materials, properties, and applications, J. Appl. Phys. 100 (2006) 1-46.
DOI: 10.1063/1.2393042
Google Scholar
[9]
A. Onodera, M. Takesada, Ferroelectricity in Simple Binary Crystals, Crystals 7 (2017) 232.
DOI: 10.3390/cryst7080232
Google Scholar
[10]
D. Damjanovic, P. Murat, N. Setter, Ferroelectric Sensors, IEE Sensors Journal 1(3) (2001) 191-206.
Google Scholar
[11]
M. Lallart, Ferroelectrics – Characterization and Modeling, Intech, Rijeka, (2011).
Google Scholar
[12]
U. De, K.R. Sahu, A. De, Ferroelectric Materials for High Temperature Piezoelectric Applications, Solid State Phenomena 232 (2015) 235-278.
DOI: 10.4028/www.scientific.net/ssp.232.235
Google Scholar
[13]
J. Valasek, Piezo-Electric and Allied Phenomena in Rochelle Salt, Phys. Rev. 17 (1921) 475-481.
DOI: 10.1103/physrev.17.475
Google Scholar
[14]
B. Wul, Dielectric Constants of Some Titanates, Nature 156 (1945) 480.
DOI: 10.1038/156480a0
Google Scholar
[15]
B. Wul, Barium Titanate: A New Ferro-Electric, Nature 157 (1946) 808.
DOI: 10.1038/157808a0
Google Scholar
[16]
G.H. Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc. 82(4) (1999) 797–818.
Google Scholar
[17]
P. Ghosez, J. Junquera, First-principles modeling of ferroelectric oxide nanostructures, in: B.S. M. Rieth, W. Schommers (Eds.), Handbook of Theoretical and Computational Nanotechnology, ASP, Stevenson Ranch, 2006, p.623–728.
Google Scholar
[18]
M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, OUP Oxford, (2001).
Google Scholar
[19]
V.V. Tomaev, L.L. Makarov, A.A. Solomennikov, P.A. Tikhonov, Oxidation Kinetics of Lead Selenide, Glass Physics and Chemistry 30(4) (2004) 349-355.
DOI: 10.1023/b:gpac.0000038709.80613.51
Google Scholar
[20]
V.V. Tomaev, V.P. Miroshkin, L.N. Gar'kin, P.A. Tikhonov, Dielectric Properties and Phase Transition in the PbSe + PbSeO3 Composite Material, Glass Physics and Chemistry 31(6) (2005) 812-819.
DOI: 10.1007/s10720-005-0130-9
Google Scholar
[21]
V.V. Tomaev, Ferroelectric Phase Transition in the PbSe + PbSeO3 Composite, Glass Physics and Chemistry 35(6) (2009) 660–667.
DOI: 10.1134/s1087659609060169
Google Scholar
[22]
Y.I. Ravich, B.A. Efimova, I.A. Smirnov, Methods of Semiconductor Investigations in Application to Lead Chalcogenides PbTe, PbSe, PbS, Nauka, Moscow, (1978).
Google Scholar
[23]
O.E. Kvyatkovskii, Microscopic theory of lattice instability in displacive type ferroelectrics, Ferroelectrics 153 (1994) 201-206.
DOI: 10.1080/00150199408016567
Google Scholar
[24]
O.E. Kvyatkovskii, On Local-Field Effects in Semiconductors and Dielectrics, Fizika Tverdogo Tela 27(9) (1985) 2673–2682.
Google Scholar
[25]
O. E. Kvyatkovskii, Dipole-Dipole Interactions in Crystals and Ferroelectric Properties of A4B6 Compounds, Fizika Tverdogo Tela 28(4) (1986) 983–990.
Google Scholar
[26]
B.A. Volkov, O.A. Pankratov, Crystal structures and symmetry of the electron spectrum of IV-VI semiconductors, JETP 48(4) (1978).
Google Scholar
[27]
B.A. Volkov, O.A. Pankratov, Electronic structure of point defects in A4B6 semiconductors, JETP 88(1) (1984) 280-293.
Google Scholar
[28]
Information on http://database.iem.ac.ru/mincryst/.
Google Scholar
[29]
S.T. Ueda, I. Kwak, A. Abelson, S. Wolf, C. Qian, M. Law, A.C. Kummel, Electronic passivation of PbSe quantum dot solids by trimethylaluminum vapor dosing, Applied Surface Science 513 (2020) 145812.
DOI: 10.1016/j.apsusc.2020.145812
Google Scholar
[30]
F. Zhao, J. Ma, D. Li, S.L. Elizondo, Z. Shi, S. Mukherjee, Influence of oxygen passivation on optical properties of PbSe thin films, Appl. Phys. Lett. 92 (2008) 211110.
DOI: 10.1063/1.2938417
Google Scholar
[31]
J.L. Peters, J.C. van der Bok, J.P. Hofmann, D. Vanmaekelbergh, Hybrid Oleate−Iodide Ligand Shell for Air-Stable PbSe Nanocrystals and Superstructures, Chem. Mater. 31 (2019) 5808−5815.
DOI: 10.1021/acs.chemmater.9b01891
Google Scholar
[32]
V.M. Bakanov, Z.I. Smirnova, Kh.N. Mukhamedzyanov, L.N. Maskaeva, V.F. Markov, Thermosensitization of chemically deposited films of lead selenide, Condensed media and interphase boundaries 13(4) (2011) 401-408.
Google Scholar
[33]
G. Bi, F. Zhao, J. Ma, S. Mukherjee, D. Li, Z. Shi, Modeling of the Potential Profile for the Annealed Polycrystalline PbSe Film, Piers Online 5(1) (2009) 245554452.
DOI: 10.2529/piers080906125457
Google Scholar
[34]
F. Zhao, J. Ma, D. Li, S. Mukherjee, G. Bi, Z. Shi, Influence of Oxygen Post-Growth Annealing on Optical and Electrical Properties of PbSe Thin Films, Journal of Electronic Materials 38(8) (2009).
DOI: 10.1007/s11664-009-0824-1
Google Scholar