Synthesis and Characterization of Microcellular Injection Molded Polyolefin/Polycaprolactone Composites

Article Preview

Abstract:

This study investigated the effect of polycaprolactone (PCL) loading (0.5, 1, and 3 wt%) on the morphology, tensile strength, and thermal properties of microcellular injection molded PP/PCL and PPgMA/PCL composites. We used the filler, PCL, that is micro-material in size. Results showed that 0.5 wt% loading of PCL on foamed PP has the largest tensile strength. However, tensile strength was almost similar to that of PPgMA composites. Tensile strength depends on the filler dispersion in the matrix and cell size present on the foamed composites. Good dispersion resulted in good tensile strength. The elongation decreased on PP but increased on PPgMA composites. The highest degradation temperature for PP/PCL and PPgMA/PCL was noted for 3.0 wt% PCL loading and neat PPgMA respectively. Cell size decreased and cell density increased with the addition of PCL into the PP and PPgMA matrix.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1041)

Pages:

11-15

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. J. Garcia-Campo, L. Quiles-Carrillo, J. Masia, M. Jorge Reig-Pérez, N. Montanes and R. Balart, Materials, 10, (2017), P.1339.

DOI: 10.3390/ma10111339

Google Scholar

[2] R. Santayanon, J. Wootthikanokkhan, Carbohydrate Polymers, V51, 1, (2013), pp.17-24.

Google Scholar

[3] M. Philipp, P. C. Gervais, R. Sanctuary, U. Müller, J. Baller, B. Wetzel, J. K. Krüger, eXPRESS Polymer Letters V.2, 8 (2008), P.546–552.

Google Scholar

[4] X. Zhong, C. D. Ji, A. K. L. Chan, S. G. Kazarian, A. Ruys, F. Dehghani, J Mater Sci: Mater Med V. 22, (2011) P.279–288.

DOI: 10.1007/s10856-010-4194-2

Google Scholar

[5] M. Xizo, Q. Yang, S. M. Cai,X. L. Cheng, G. X. Li, China Plastic Industry, V.38, 6, (2010), P.15.

Google Scholar

[6] A. R. Kakroodia, Y. Kazemia, D. Rodrigueb, C. B. Park, Chemical Engineering Journal, 351 (2018), P.976-984.

Google Scholar

[7] B. De Roover, M. Sclavons, V. Carlier, J. Devaux, R. Legras, A. Momtaz, Polymer chemistry, 33, 5, (1995), 829-842.

DOI: 10.1002/pola.1995.080330509

Google Scholar

[8] T.N. Moja, N. Bunekar, S. Mojakia, S.B. Mishra,, T.Y. Tsai, S.S. Hwang, A.K. Mishra, J. of Inorganic and Organometallic Polymers and Materials, 28, (2018), 6, 2799-2811.

DOI: 10.1007/s10904-018-0936-2

Google Scholar

[9] A. Cho, K., Li, F., Choi, J. of Polymer 40, (1999), 1719-1729.

Google Scholar

[10] J. Hou, G. Zhao, L. Zhang, G. Dong, G. Wang. Ind Eng Chem Res 57, (2018),13, 4710–20.

Google Scholar

[11] S. N. Leung, A. Wong, L. C. Wang, C. B. Park, J. Supercrit Fluids 63, (2012), 187–98.

Google Scholar