[1]
L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties, 2nd ed. Cambridge Univ. Press, (2001).
Google Scholar
[2]
H. P. Degischer and B. Kriszt, Handbook of Cellular Metals: Production, Processing, Applications, 1st ed. Wiley, (2002).
DOI: 10.1002/3527600558
Google Scholar
[3]
N. Dukhan, Metal foams: fundamentals and applications. DEStech Publications, (2013).
Google Scholar
[4]
C. S. Marchi and A. Mortensen, Infiltration and the replication process for producing metal sponges., in Handbook of Cellular Metals: Production, Processing, Applications: Wiley, (2002).
Google Scholar
[5]
C. Gaillard, J. F. Despois, and A. Mortensen, Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminium foams,, Materials Science and Engineering: A, vol. 374, no. 1-2, pp.250-262, (2004).
DOI: 10.1016/j.msea.2004.03.015
Google Scholar
[6]
K. A. Güler, Z. Taslicukur, and G. Özer, Production of Open Cell Aluminium Metal Foam with Lost Foam Technique,, Materials Testing, vol. 53, no. 5, pp.295-297,2 011.
DOI: 10.3139/120.110229
Google Scholar
[7]
Z. Wang, J. Gao, K. Chang, L. Meng, N. Zhang, and Z. Guo, Manufacturing of open-cell aluminum foams via infiltration casting in super-gravity fields and mechanical properties,, RSC Advances, vol. 8, no. 29, pp.15933-15939, (2018).
DOI: 10.1039/c7ra13689g
Google Scholar
[8]
M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, M. F. Ashby, Ed. Metal foams: a design guide. Boston: Butterworth-Heinemann, 2000, p.251.
DOI: 10.1016/b978-075067219-1/50001-5
Google Scholar
[9]
S. Singh and N. Bhatnagar, A survey of fabrication and application of metallic foams ,Journal of Porous Materials, vol. 25, no. 2, pp.537-554, (2018).
DOI: 10.1007/s10934-017-0467-1
Google Scholar
[10]
J. Banhart, Metal Foams: Production and Stability,, Advanced Engineering Materials, vol. 8, no. 9, pp.781-794, (2006).
Google Scholar
[11]
G. Singh and P. M. Pandey, Uniform and graded copper open cell ordered foams fabricated by rapid manufacturing: surface morphology, mechanical properties and energy absorption capacity,, Materials Science and Engineering: A, vol. 761, (2019).
DOI: 10.1016/j.msea.2019.138035
Google Scholar
[12]
Q. Fabrizio, A. Boschetto, L. Rovatti, and L. Santo, Replication casting of open-cell AlSi7Mg0.3 foams,, Materials Letters, vol. 65, no. 17, pp.2558-2561, (2011).
DOI: 10.1016/j.matlet.2011.05.057
Google Scholar
[13]
G. A. Lara-Rodriguez, I. A. Figueroa, M. A. Suarez, O. Novelo-Peralta, I. Alfonso, and R. Goodall, A replication-casting device for manufacturing open-cell Mg foams,, Journal of Materials Processing Technology, vol. 243, pp.16-22, (2017).
DOI: 10.1016/j.jmatprotec.2016.11.041
Google Scholar
[14]
A. Jinnapat and A. Kennedy, The Manufacture and Characterisation of Aluminium Foams Made by Investment Casting Using Dissolvable Spherical Sodium Chloride Bead Preforms,, Metals, vol. 1, no. 1, pp.49-64, (2011).
DOI: 10.3390/met1010049
Google Scholar
[15]
B. Jiang, N. Zhao, C. Shi, and J. Li, Processing of open cell aluminum foams with tailored porous morphology,, Scripta Materialia, vol. 53, no. 6, pp.781-785, (2005).
DOI: 10.1016/j.scriptamat.2005.04.055
Google Scholar
[16]
B. Jiang, Z. Wang, and N. Zhao, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams,, Scripta Materialia, vol. 56, no. 2, pp.169-172, (2007).
DOI: 10.1016/j.scriptamat.2006.08.070
Google Scholar
[17]
B. Soni and S. Biswas, Evaluation of mechanical properties under quasi-static compression of open-cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method,, Materials Characterization, vol. 130, pp.198-203, (2017).
DOI: 10.1016/j.matchar.2017.06.008
Google Scholar
[18]
S. Báez–Pimiento, M. E. Hernández–Rojas, and M. E. Palomar–Pardavé, Processing and Characterization of Open–Cell Aluminum Foams Obtained through Infiltration Processes, presented at the Inter. Congress of Science and Technology of Metallurgy and Materials, (2015).
DOI: 10.1016/j.mspro.2015.04.007
Google Scholar
[19]
Q. M. Li, I. Magkiriadis, and J. J. Harrigan, Compressive Strain at the Onset of Densification of Cellular Solids,, Journal of Cellular Plastics, vol. 42, no. 5, pp.371-392, (2006).
DOI: 10.1177/0021955x06063519
Google Scholar
[20]
Y. Yamada et al., Effects of Cell Geometry on the Compressive Properties of Nickel Foams,, Materials Transactions, JIM, vol. 41, no. 9, pp.1136-1138, (2000).
DOI: 10.2320/matertrans1989.41.1136
Google Scholar