Fluorine-Free Durable Superhydrophobic Surfaces Fabricated via a Simple Spraying Method

Article Preview

Abstract:

Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies and special chemical regents with low surface free energy. Such surface structures are highly susceptible to mechanical wear. Moreover, the use of fluorinated compounds is harmful to both human health and environment. Herein, a simple method based on spin coating and spraying is proposed to fabricate durable fluorine-free superhydrophobic surfaces. A glass substrate was coated with a layer of water-based paint via a simple spinning process. Due to the adhesive layer, modified SiO2 nanoparticles were strongly bonded to the glass substrate. After the coating was completely cured, the surfaces realized a water contact angle of 165.1° and maintained their water repellency after 50 abrasion cycles with sandpaper and 50 times of stripping test. No chemical reagents harmful for the environment were used.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1041)

Pages:

69-73

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Neinhuis, W. Barthlott: Ann. Bot. Vol. 79 (1997), p.667.

Google Scholar

[2] W. Barthlott, C. Neinhuis: Plant Vol. 202 (1997), p.1.

Google Scholar

[3] L. Feng, S. Li, Y. Li: Adv. Mater. Vol. 14 (2002), p.1857.

Google Scholar

[4] Q.H. Zhang, B.S. Hou, Y.Y. Li: Corros. Sci. Vol. 164 (2020), 108346.

Google Scholar

[5] S. Barthwala, B. Leeb and S.H. Lim: Appl. Surf. Sci. Vol. 496 (2019), 143677.

Google Scholar

[6] C.M. Yu, S. Sasic and K. Liu: Chem. Eng. Res. Des. Vol. 155 (2020), p.48.

Google Scholar

[7] X.L. Yin, S.R. Yu and L.Y. Wang: Sep. Purif. Technol. Vol. 234 (2020), p.116.

Google Scholar

[8] J. Li, Y.L. Zhou, W.B. Wang: J. Alloys Compd. Vol. 819 (2020), 152968.

Google Scholar

[9] X.K. Zhou, W. X and W.W. Liu: Appl. Surf. Sci. Vol. 509 (2020), 145406.

Google Scholar

[10] Y.R. Wang, S. Vitas and I. Burgert: Wood Sci. Technol. Vol. 53 (2019), p.985.

Google Scholar

[11] P.N. Tria, H.N. Tran and C.O. Plamondon: Prog. Org. Coat. Vol. 132 (2019), p.235.

Google Scholar

[12] R.X. Tan, H.Y. Xie and J.Q. She: Carbon Vol. 145 (2019), p.359.

Google Scholar

[13] N.J. Shirtcliffe, G. Mchale and S. Atherton: Adv. Colloid Interface Sci. Vol. 161 (2010), p.124.

Google Scholar

[14] Y.W. Su, B.H. Ji and K. Zhang: Langmuir Vol. 26 (2010), p.4984.

Google Scholar

[15] X.L. Tian, T. Verho and R.H.A. Ras: Science Vol. 352 (2016), p.142.

Google Scholar

[16] M.P. Yang, C. Jiang and W.Q. Liu: Appl. Surf. Sci. Vol. 507 (2020), 145165.

Google Scholar

[17] S.D. Wang, S.S. Luo: Appl. Surf. Sci. Vol. 258 (2012), p.5443.

Google Scholar

[18] G.H. Bogush, M.A. Tracy and C.F. Zukoskiiv: J. Non. Cryst. Solids Vol. 104(1988), p.95.

Google Scholar

[19] Y. Xu, W.H. Fan, Z.H. Li, D. Wu and Y.H. Sun: APPL. OPTICS Vol. 42(2003), p.108.

Google Scholar

[20] J.D. Huang, S.Q. Wang and F. Fu: Ind. Crops. Prod. Vol. 122(2018), p.438.

Google Scholar

[21] B.Y. Chen, J.H. Qiu and E. Sakai: ACS Appl. Mater. Interfaces Vol. 8(2016), p.17659.

Google Scholar

[22] D. Goswami, S.K. Medda and G. De: ACS Appl. Mater. Interfaces Vol. 3(2011), p.3440.

Google Scholar

[23] F. Zhang, Y.Y. Wang and C.S. Peng: Appl. Surf. Sci. Vol. 407(2017), p.526.

Google Scholar

[24] C.H. Xue, J.Z. Ma: J. Mater. Chem. A Vol. 1 (2013), p.4146.

Google Scholar

[25] T. Verho, C. Bower and P. Andrew: Adv. Mater. Vol. 23 (2011), p.673.

Google Scholar

[26] Y. Lu, S. Sathasivam and J.L. Song: Science Vol. 347 (6226), p.1132.

Google Scholar