Moiré Nanolithography Based on Ultrathin Anodized Aluminium Oxide Membranes

Article Preview

Abstract:

A new nanofabrication method for construction of complex superlattice structure with versatile super-periodicity is developed using the moiré fringe of anodized aluminium oxide (AAO) membranes. Two ultrathin AAO membranes with long-range order holes are stacked to form 2D moiré nanopatterns. Both rotational symmetry and the periodicity of the holes are modified by the relative spatial displacement between the superimposing layers. Using the membranes as metal evaporation masks, a wide assortment of complex Al nanostructures are fabricated by varying the misorientation angle of the two ultrathin AAO membranes. Highly ordered Al nanoparticles with different sizes, shapes, orientations, and arrangements on substrates are achieved, which are expected to give abundant surface plasmon mode.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1041)

Pages:

81-85

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. A. Atwater and A. Polman: Nature Mater. Vol. 9 (2010), pp.205-213.

Google Scholar

[2] W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz and T. W. Odom: Nature Nanotech. Vol. 8 (2013), pp.506-511.

DOI: 10.1038/nnano.2013.99

Google Scholar

[3] D. Ok Shin, J. R. Jeong, T. H. Han, C. M. Koo, H. J. Park, Y. T. Lim and S. O. Kim: J. Mater. Chem. Vol. 20 (2010), pp.7241-7247.

Google Scholar

[4] N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle and J. Dostalek: Nanoscale Vol. 10 (2018), pp.10268-10276.

DOI: 10.1039/c7nr08905h

Google Scholar

[5] Z. B. Zhan, R. Xu, Y. Mi, H. P. Zhao and Y. Lei: ACS Nano Vol. 9 (2015), pp.4583-4590.

Google Scholar

[6] C. C. Zhao, Y. Zhu, Y. Q. Su, Z. Y. Guan, A. Q. Chen, X. Ji, X. C. Gui, R. Xiang and Z. K. Tang: Adv. Opt. Mater. Vol. 3 (2015), pp.248-56.

Google Scholar

[7] J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. H. Fan and S. O. Kim: Nature Commun. Vol. 7 (2016), p.12911.

DOI: 10.1038/ncomms12911

Google Scholar

[8] M. J. Choi, G. Kang, D. Shin, N. Barange, C. Lee, D. Ko and K. Kim: ACS Appl. Mater. Interfaces Vol. 8 (2016), pp.12997-13008.

DOI: 10.1021/acsami.6b02340

Google Scholar

[9] D. Q. Wang, A. K. Yang, W. J. Wang, Y. Hua, R. D. Schaller, G. C. Schatz and T. W. Odom: Nature Nanotech Vol. 12 (2017), pp.889-894.

DOI: 10.1038/nnano.2017.126

Google Scholar

[10] Z. L. Wu and Y. B. Zheng: Adv. Opt. Mater. Vol. 6 (2018), p.1701057.

Google Scholar

[11] H. Masuda, H. Yamada, M. Satoh and H. Asoh: Appl. Phys. Lett. Vol. 71 (1997), pp.2770-2772.

Google Scholar

[12] L. Y. Wen, R. Xu, Y. Mi and Y. Lei: Nature Nanotech. Vol. 12 (2017), p.244–250.

Google Scholar

[13] G. Oster, M. Wasserman and C. Zwerling: J. Opt. Soc. Am. Vol. 54 (1964), pp.169-175.

Google Scholar