Physical Properties of Cement-Sand Brick Made by Kenaf Core: Discovering the Optimal Formulation

Article Preview

Abstract:

In this study, the effect of replacing the river sand with industrial waste and cellulosic waste was investigated. The cellulosic waste use in this study only focuses on kenaf core, while the industrial waste use in this study is quarry dust. The fine aggregate formulation is adjusted with a different percentage of kenaf core. While the quarry dust is fixed at 50% replacement level. The water-cement ratio set for the formulation is 0.75, and the cement-sand ratio fixes at 1:8. The physical properties are measured through compressive strength and density at 28 days. The result shows that 10% is the maximum replacement of sand with kenaf core to produced brick that using 50% of quarry dust. The compressive strength value of the 10% of kenaf core at 28 days is 8.16 N/mm2 while for density is 1830 kg/m3 at 28 days. All the result shows that kenaf core has the potential to be used as a lightweight fine aggregate. But kenaf core needs to combine with other materials that contribute to the strength.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1041)

Pages:

89-94

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Sheikh Khalid, H. Shah Herman, N. B. Azmi, and M. I. Juki, Sand Cement Brick Containing Recycled Concrete Aggregate as Fine-Aggregate Replacement,, in MATEC Web of Conferences, (2017).

DOI: 10.1051/matecconf/201710301016

Google Scholar

[2] I. O. Agbede and M. Joel, Use of cement-sand admixture in laterite brick production for low cost housing,, Leonardo Electron. J. Pract. Technol., (2008).

Google Scholar

[3] A. A. Wahab, M. F. Arshad, Z. Ahmad, A. R. Mohd Ridzuan, and M. H. Wan Ibrahim, Potential of bottom ash as sand replacement material to produce sand cement brick,, Int. J. Integr. Eng., (2018).

Google Scholar

[4] C. Sukesh, K. Bala Krishna, Ps. Lakshmi Sai Teja, and Sk. Rao, Partial Replacement of Sand with Quarry Dust in Concrete,, Int. J. Innov. Technol. Explor. Eng., (2013).

Google Scholar

[5] V. Nozahic and S. Amziane, Influence of sunflower aggregates surface treatments on physical properties and adhesion with a mineral binder,, Compos. Part A Appl. Sci. Manuf., (2012).

DOI: 10.1016/j.compositesa.2012.07.011

Google Scholar

[6] L. T. T. Vo and P. Navard, Treatments of plant biomass for cementitious building materials – A review,, Construction and Building Materials. (2016).

DOI: 10.1016/j.conbuildmat.2016.05.125

Google Scholar

[7] A. Amiri, Z. Triplett, A. Moreira, N. Brezinka, M. Alcock, and C. A. Ulven, Standard density measurement method development for flax fiber,, Ind. Crops Prod., (2017).

DOI: 10.1016/j.indcrop.2016.11.060

Google Scholar

[8] S. R. Karade, Cement-bonded composites from lignocellulosic wastes,, Construction and Building Materials. (2010).

DOI: 10.1016/j.conbuildmat.2010.02.003

Google Scholar

[9] Information on, http://www.lktn.gov.my, Accessed on 11th May (2015).

Google Scholar

[10] M. R. Ishak, Z. Leman, S. M. Sapuan, A. M. M. Edeerozey, and I. S. Othman, Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites,, IOP Conf. Ser. Mater. Sci. Eng., (2010).

DOI: 10.1088/1757-899x/11/1/012006

Google Scholar

[11] A. Elsaid, M. Dawood, R. Seracino, and C. Bobko, Mechanical properties of kenaf fiber reinforced concrete,, Constr. Build. Mater., (2011).

DOI: 10.1016/j.conbuildmat.2010.11.052

Google Scholar

[12] G. Siti Aisyah, S. Zul Hilmi, A. H. Nabilah Huda, M. T. Ramlah, M. J. Janmaizatulriah, and S. A. Sharifah Aminah, Comparative Debark and Macronutrients Content from Retting Water Using 1:2 and 1:10 Kenaf Weight to Water Volume Ratio,, in InCIEC 2015, (2016).

DOI: 10.1007/978-981-10-0155-0_4

Google Scholar

[13] B. Choi, J. Y. Chung, H. J. Bae, I. Bae, S. Park, and H. Bae, Functional characterization of cinnamyl alcohol dehydrogenase during developmental stages and under various stress conditions in kenaf (Hibiscus cannabinus L.),, BioResources, (2016).

DOI: 10.15376/biores.11.1.105-125

Google Scholar

[14] A. Almusawi, R. Lachat, K. E. Atcholi, and S. Gomes, Proposal of manufacturing and characterization test of binderless hemp shive composite,, Int. Biodeterior. Biodegrad., (2016).

DOI: 10.1016/j.ibiod.2016.09.011

Google Scholar

[15] Y. Kojima, Kenaf as a Bioresource for Production of Hydrogen-rich Gas,, Agrotechnology, vol. 03, no. 01, p.1–8, (2014).

DOI: 10.4172/2168-9881.1000125

Google Scholar

[16] A. Nor Munirah, M. T. Ramlah, and A. Sharifah, Cellulosic Materials Characterisation of Kenaf Core from Retting Process Using Thermal Analysis,, Appl. Mech. Mater., (2015).

DOI: 10.4028/www.scientific.net/amm.754-755.1023

Google Scholar

[17] Z. M. Salisu, S. U. Ishiaku, D. Abdullahi, M. K. Yakubu, and B. H. Diya'uddeen, Development of kenaf shive bio–mop via surface deposit technique for water remediation from crude oil spill contamination,, Results Eng., (2019).

DOI: 10.1016/j.rineng.2019.100020

Google Scholar

[18] E. Aamr-Daya, T. Langlet, A. Benazzouk, and M. Quéneudec, Feasibility study of lightweight cement composite containing flax by-product particles: Physico-mechanical properties,, Cem. Concr. Compos., (2008).

DOI: 10.1016/j.cemconcomp.2008.06.002

Google Scholar

[19] J. Cigasova, N. Stevulova, I. Schwarzova, A. Sicakova, and J. Junak, Application of hemp hurds in the preparation of biocomposites,, in IOP Conference Series: Materials Science and Engineering, (2015).

DOI: 10.1088/1757-899x/96/1/012023

Google Scholar

[20] Y. Diquélou, E. Gourlay, L. Arnaud, and B. Kurek, Impact of hemp shiv on cement setting and hardening: Influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix,, Cem. Concr. Compos., (2015).

DOI: 10.1016/j.cemconcomp.2014.09.004

Google Scholar

[21] S. Mohamad Jani and K. Izran, Kenaf core particleboard and its sound absorbing properties,, J. Sci. Technol., (2012).

Google Scholar

[22] H. A. Aisyah, M. T. Paridah, M. H. Sahri, U. M. K. Anwar, and A. A. Astimar, Properties of medium density fibreboard (MDF) from kenaf (Hibiscus cannabinus L.) core as function of refining conditions,, Compos. Part B Eng., (2013).

DOI: 10.1016/j.compositesb.2012.02.029

Google Scholar

[23] T. Poonsawat, P. Ritdet, and S. Jarusombutti, Value-added products from kenaf and hemp core residue,, J. Eng. Appl. Sci., (2016).

Google Scholar

[24] BS-EN197-1:, Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cements,, Br. Stand., (2011).

Google Scholar

[25] Jabatan Kerja Raya Malaysia, JKR 20800-0183-14 (2014): Standard Specifications for Building Works,.

Google Scholar

[26] BS-EN771-3:2011;, BSI Standards Publication Specification for masonry units Part 3 : Aggregate concrete masonry units ( Dense and lightweight aggregates ),, BSI Stand. Publ., (2011).

DOI: 10.3403/03006778u

Google Scholar

[27] BS EN 772-1, BSI Standards Publication Methods of test for masonry units Part 1 : Determination of compressive strength,, BSI Stand. Publ., 201.

Google Scholar

[28] BS EN 772-13, BSI Standards Publication Methods of Test for Masonry Units–Part 13: Determination of Net and Gross Dry Density of Masonry Units (Except for Natural Stone),, Czech Repub., (2001).

DOI: 10.3403/01784881

Google Scholar

[29] L.W. Charles, K. B. Venita, and E. B. Robert in: Trends in new crops and new uses, edtied by J. Janick and A. Whipkey/ ASHS Press, Alexandria, VA (2002).

Google Scholar

[30] C. L. Hwang and T. P. Huynh, Investigation into the use of unground rice husk ash to produce eco-friendly construction bricks,, Constr. Build. Mater., (2015).

DOI: 10.1016/j.conbuildmat.2015.04.061

Google Scholar