[1]
V.S. Lesovik, E.V. Fomina, The new paradigm of designing construction composites to protect the human environment, Vestnik MGSU. 14 (10) (2019) 1241–1257.
DOI: 10.22227/1997-0935.2019.10.1241-1257
Google Scholar
[2]
D.M. Sopin, S.V. Klyuev, M.S. Ageeva, R.V. Lesovik, G.G. Bogusevich, Development of radiation-proof concrete compositions, Construction Materials and Products. 3 (5) (2020) 24–33.
DOI: 10.34031/2618-7183-2020-3-5-24-33
Google Scholar
[3]
A.A.A. Ahmed, R.V. Lesovik, Al'-Bo-Ali W, G.A. Lesovik, Influence of fine-dispersed additive from concrete scrap on structure formation of portlandcement, Bulletin of BSTU named after V.G. Shukhov. 1 (2021) 20–28.
DOI: 10.34031/2071-7318-2021-6-1-20-28
Google Scholar
[4]
M.Y. Elistratkin, E.S. Glagolev Composite binder for structural cellular concrete, Materials Science Forum. 945 (2018) 53–58.
DOI: 10.4028/www.scientific.net/msf.945.53
Google Scholar
[5]
Y. Pukharenko, V. Staroverov, D. Ryzhov, Nanomodified concrete mixes for form-free moulding, Materials Today: Proceedings. 19 (2019) 2189–2192.
DOI: 10.1016/j.matpr.2019.07.372
Google Scholar
[6]
Yunliang Zhao, Yimin Zhang, Tiejun Chen, Yongliang Chen, Shenxu Bao, Preparation of high strength autoclaved bricks from hematite tailings, Construction and Building Materials. 28 (1) (2012) 450-455.
DOI: 10.1016/j.conbuildmat.2011.08.078
Google Scholar
[7]
Y. Peng, Y. Liu, B. Zhan, G. Xu, Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source, Construction and Building Materials. 267 (2021) 121792.
DOI: 10.1016/j.conbuildmat.2020.121792
Google Scholar
[8]
T. Shams, G. Schober, D. Heinz, S. Seifert, Production of autoclaved aerated concrete with silica raw materials of a higher solubility than quartz part I: Influence of calcined diatomaceous earth, Construction and Building Materials. 272 (2021) 122014.
DOI: 10.1016/j.conbuildmat.2020.122014
Google Scholar
[9]
R. Dachowski, K. Komisarczyk, Determination of microstructure and phase composition of sand-lime brick after autoclaving process, Procedia Engineering. 161 (2016) 747–753.
DOI: 10.1016/j.proeng.2016.08.762
Google Scholar
[10]
Mingxu Chen, Lingchao Lu, Shoude Wang, Piqi Zhao, Wenlong Zhang, Shuxin Zhang, Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing, Construction and Building Materials. 143 (2017) 280–288.
DOI: 10.1016/j.conbuildmat.2017.03.143
Google Scholar
[11]
S Bernstein, Thomas Karl Fehr, The formation of 1.13 nm tobermorite under hydrothermal conditions: 1. The influence of quartz grain size within the system CaO–SiO2–D2O, Progress in Crystal Growth and Characterization of Materials. 58 (2-3) (2012) 84-91.
DOI: 10.1016/j.pcrysgrow.2012.02.006
Google Scholar
[12]
Yangyu Liu, Hongwei Jia, Guangxin Zhang, Zhiming Sun, Yongtai Pan, Shuilin Zheng, Synthesis and humidity control performances of natural opoka based porous calcium silicate hydrate, Advanced Powder Technology. 30 (11) (2019) 2733-2741.
DOI: 10.1016/j.apt.2019.08.020
Google Scholar
[13]
A.N. Volodchenko, V.V. Nelyubova, Reactivity of the clay component of rocks at the incomplete stage of mineral formation to lime during autoclave processing, Lecture Notes in Civil Engineering. 95 (2021) 86–91.
DOI: 10.1007/978-3-030-54652-6_13
Google Scholar
[14]
V.S. Lesovik, A.A. Volodchenko, R.S. Fediuk, R. Timokhin, Amran Y.H. Mugahed, Enhancing performances of clay masonry materials based on nanosize mine waste, Construction and Building Materials. 269 (2021) 121333.
DOI: 10.1016/j.conbuildmat.2020.121333
Google Scholar
[15]
A.N. Volodchenko, V.S. Lesovik, A.A. Volodchenko, E.S. Glagolev, G.G. Bogusevich, Energy saving raw materials for the production of new generation silicate materials, International Journal of Pharmacy and Technology. 8 (4) (2016) 22673–22686.
DOI: 10.4028/www.scientific.net/msf.1043.93
Google Scholar