[1]
A.S.Z. Jones, N. Kalantar, Z. Pei, J. Vickers, T. Wangler, et al, Additive manufacturing processes for infrastructure construction: a review, J Manuf Sci E-T Asme. 141 (2019) 0910109.
DOI: 10.1115/1.4044106
Google Scholar
[2]
A. Paolini, S. Kollmannsberger, E. Rank, Additive manufacturing in construction: a review on processes, applications, and digital planning methods, Addit. Manuf. 30 (2019) 100894.
DOI: 10.1016/j.addma.2019.100894
Google Scholar
[3]
B. Green, Productivity in Construction: Creating a Framework for the Industry to Thrive, Research Report by The Chartered Institute of Building, UK (2016).
Google Scholar
[4]
B. Khoshnevis, Automated construction by contour crafting—related robotics and information technologies, Autom. Constr. 13 (1) (2004) 5-19. 10.1016/j.autcon.2003.08.012.
DOI: 10.1016/j.autcon.2003.08.012
Google Scholar
[5]
B. Panda, J.H. Lim, M.J. Tan, Mechanical properties and deformation behaviour of early age concrete in the context of digital construction, Compos. B Eng. 165 (2019) 563-571.
DOI: 10.1016/j.compositesb.2019.02.040
Google Scholar
[6]
B. Panda, S. Chandra Paul, Tan M. Jen, Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Mater. Lett. 209 (2017) 146-149.
DOI: 10.1016/j.matlet.2017.07.123
Google Scholar
[7]
B. Panda, S. Ruan, C. Unluer, M.J. Tan, Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay, Compos. B Eng. 165 (2019) 75-83.
DOI: 10.1016/j.compositesb.2018.11.109
Google Scholar
[8]
B. Panda, Y.W.D. Tay, S.C. Paul, M.J. Tan Current challenges and future potential of 3D concrete printing: aktuelle Herausforderungen und Zukunftspotenziale des 3D-Druckens bei Beton, Mater. Werkst off tech. 49 (5) (2018) 666-673. 10.1002/mawe.201700279.
DOI: 10.1002/mawe.201700279
Google Scholar
[9]
G. Ma, Z. Li, L. Wang, F. Wang, J. Sanjayan, Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing, Constr. Build Mater. 202 (2019) 770-783.
DOI: 10.1016/j.conbuildmat.2019.01.008
Google Scholar
[10]
G. Ma, Z. Li, L.I. Wang, Printable properties of cementitious material containing copper tailings for extrusion based 3D printing, Constr. Build. Mater. 162 (2018) 613-627. 10.1016/j.conbuildmat.2017.12.051.
DOI: 10.1016/j.conbuildmat.2017.12.051
Google Scholar
[11]
Geert De Schutter, Karel Lesage, Viktor Mechtcherine, Venkatesh Naidu Nerella, Guillaume Habert, Isolda Agusti-Juan, Vision of 3D printing with concrete — Technical, economic and environmental potentials, Cement and Concrete Research. 112 (2018) 25-36. 10.1016/j.cemconres.2018.06.001.
DOI: 10.1016/j.cemconres.2018.06.001
Google Scholar
[12]
H. Nasir, H. Ahmed, C. Haas, P.M. Goodrum, An analysis of construction productivity differences between Canada and the United States, Constr. Manag. Econ. 32 (2013) 1-13. 10.1080/01446193.2013.848995.
DOI: 10.1080/01446193.2013.848995
Google Scholar
[13]
H.W. Kang, D.W. Cho, Development of an indirect stereo lithography technology for scaffold fabrication with a wide range of biomaterial selectivity, Tissue Eng. Part C Methods 18 (9) (2012) 719-729.
DOI: 10.1089/ten.tec.2011.0621
Google Scholar
[14]
J.-P. Kruth, P. Mercelis, J. Van Vaerenbergh, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyp. J. 11 (1) (2005) 26-36.
DOI: 10.1108/13552540510573365
Google Scholar
[15]
J.R. Castrejon-Pita, W.R.S. Baxter, J. Morgan, S. Temple, G.D. Martin, I.M. Hutchings, Future, opportunities and challenges of Inkjet technologies, Atomization Sprays. 23 (2013) 541-565.
DOI: 10.1615/atomizspr.2013007653
Google Scholar
[16]
Jan Mischke, Reinventing construction: a route to higher productivity, MCKinsey global institute, construction: let's build changes!, brussels, July 6, (2017).
Google Scholar
[17]
L. Reiter, T. Wangler, N. Roussel, R.J. Flatt, The role of early age structural build-up in digital fabrication with concrete, Cem. Concr. Res. 112 (2018) 86-95.
DOI: 10.1016/j.cemconres.2018.05.011
Google Scholar
[18]
M. Chen, L. Li, Y. Zheng, P. Zhao, L. Lu, X. Cheng, Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials, Constr. Build Mater. 189 (2018) 601-611.
DOI: 10.1016/j.conbuildmat.2018.09.037
Google Scholar
[19]
M. Hambach, D. Volkmer, Properties of 3D-printed fiber-reinforced Portland cement paste, Cem. Concr. Compos. 79 (2017) 62-70.
DOI: 10.1016/j.cemconcomp.2017.02.001
Google Scholar
[20]
M. Papachristoforou, V. Mitsopoulos, M. Stefanidou, Use of by-products for partial replacement of 3D printed concrete constituents; rheology, strength and shrinkage performance, Frattura ed Integrità Strutturale. 13 (50) (2019) 526-536.
DOI: 10.3221/igf-esis.50.44
Google Scholar
[21]
N. Roussel, F. Cussigh, Distinct-layer casting of SCC: The mechanical consequences of thixotropy, Cem. Concr. Res. 38 (5) (2008) 624-632.
DOI: 10.1016/j.cemconres.2007.09.023
Google Scholar
[22]
N. Roussel, Rheological requirements for printable concretes, Cem. Concr. Res. 112 (2018) 76-85.
Google Scholar
[23]
P. Feng, X. Meng, J. Chen, L. Ye, Mechanical properties of structures 3D printed with cementitious powders, Constr. Build. Mater. 93 (2015) 486-497.
DOI: 10.1016/j.conbuildmat.2015.05.132
Google Scholar
[24]
P. Shakor, J. Sanjayan, A. Nazari, S. Nejadi, Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing, Constr. Build. Mater. 138 (2017) 398-409. 10.1016/j.conbuildmat.2017.02.037.
DOI: 10.1016/j.conbuildmat.2017.02.037
Google Scholar
[25]
Peng Wu, Jun Wang, Xiangyu Wang, A critical review of the use of 3-D printing in the construction industry, Automation in Construction. 68 (2016) 21-31. 10.1016/j.autcon.2016.04.005.
DOI: 10.1016/j.autcon.2016.04.005
Google Scholar
[26]
R.A. Buswell, W.R. Leal de Silva, S.Z. Jones, J. Dirrenberger 3D printing using concrete extrusion: a roadmap for research, Cem. Concr. Res. 112 (2018) 37-49. 10.1016/j.cemconres.2018.05.006.
DOI: 10.1016/j.cemconres.2018.05.006
Google Scholar
[27]
R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing, Cement and Concrete Research. 106 (2018) 103-116. 10.1016/j.cemconres.2018.02.001.
DOI: 10.1016/j.cemconres.2018.02.001
Google Scholar
[28]
R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Hardened properties of 3D printed concrete: The influence of process parameters on interplay adhesion, Cem. Concr. Res. 119 (2019) 132-140.
DOI: 10.1016/j.cemconres.2019.02.017
Google Scholar
[29]
S.G. Naoum, Factors influencing labor productivity on construction sites, Int. J. Product. Perform. Manag. 65 (2016) 401-421.10.1108/IJPPM-03-2015-0045.
Google Scholar
[30]
Shaodan Hou, Zhenhua Duan, Jianzhuang Xiao, Jun Ye, A review of 3D printed concrete: Performance requirements, testing measurements and mix design, Construction and Building Materials. 273 (2021) 10. 1016/j.conbuildmat.2020.121745.
DOI: 10.1016/j.conbuildmat.2020.121745
Google Scholar
[31]
T. Wangler, N. Roussel, F.P. Bos, T.A.M. Salet, R.J. Flatt Digital concrete: a review, Cem. Concr. Res. 123 (2019) 105780. 10.1016/j.cemconres.2019.105780.
DOI: 10.1016/j.cemconres.2019.105780
Google Scholar
[32]
T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, A.G.F. Gibb, T. Thorpe, Mix design and fresh properties for high-performance printing concrete, Mater. Struct. 45 (8) (2012) 1221-1232.
DOI: 10.1617/s11527-012-9828-z
Google Scholar
[33]
T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, R. Law, A.G.F. Gibb, et al., Hardened properties of high-performance printing concrete, Cem. Concr. Res. 42 (3) (2012) 558-566.
DOI: 10.1016/j.cemconres.2011.12.003
Google Scholar
[34]
V.N. Nerella, M. Näther, A. Iqbal, M. Butler, V. Mechtcherine, Inline quantification of extrudability of cementitious materials for digital construction, Cem. Concr. Compos. 95 (2019) 260-270.
DOI: 10.1016/j.cemconcomp.2018.09.015
Google Scholar
[35]
W. Long, J. Tao, C. Lin, Y. Gu, L. Mei, H. Duan, et al., Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing, J. Clean. Prod. 239 (2019) 118054.
DOI: 10.1016/j.jclepro.2019.118054
Google Scholar
[36]
Y. Zhang, Y. Zhang, G. Liu, Y. Yang, M. Wu, B. Pang, Fresh properties of a novel 3D printing concrete ink, Constr. Build. Mater. 174 (2018) 263-271.
DOI: 10.1016/j.conbuildmat.2018.04.115
Google Scholar
[37]
Z. Liu, M. Li, Y. Weng, T.N. Wong, M.J. Tan, Mixture design approach to optimize the rheological properties of the material used in 3D cementitious material printing, Constr. Build Mater. 198 (2019) 245-255.
DOI: 10.1016/j.conbuildmat.2018.11.252
Google Scholar