Materials for 3D Concrete Printing: Approach to Standardization in Russia

Article Preview

Abstract:

3D Concrete Printing (3DCP) technology, compared to traditional monolithic construction, gives a possibility to increase the workspeed and reduce the manual laborproportion, reduce material consumption and also improve the architectural appearance of buildings being erected. At the same time, more stringent requirements are imposed on the material for 3D printing in terms of rheological characteristicscontrol, strength developmentkinetics, interplay adhesion and some other parameters than for conventional ready-mixed concrete. Therefore, to ensure the mass application of technologies for additive construction production using concrete as printing ink, it is necessary to develop a regulatory and technical base, including the development of standard test methods to determine the operational properties of this typeofmaterials. The article examines the main trends in the management of the materials’properties for construction 3D printing based on cement binders and describes the principles of building a system for standardizing materials for 3D printing construction in Russia, which was developed with the participation of the authors of this article.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1043)

Pages:

141-148

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S.Z. Jones, N. Kalantar, Z. Pei, J. Vickers, T. Wangler, et al, Additive manufacturing processes for infrastructure construction: a review, J Manuf Sci E-T Asme. 141 (2019) 0910109.

DOI: 10.1115/1.4044106

Google Scholar

[2] A. Paolini, S. Kollmannsberger, E. Rank, Additive manufacturing in construction: a review on processes, applications, and digital planning methods, Addit. Manuf. 30 (2019) 100894.

DOI: 10.1016/j.addma.2019.100894

Google Scholar

[3] B. Green, Productivity in Construction: Creating a Framework for the Industry to Thrive, Research Report by The Chartered Institute of Building, UK (2016).

Google Scholar

[4] B. Khoshnevis, Automated construction by contour crafting—related robotics and information technologies, Autom. Constr. 13 (1) (2004) 5-19. 10.1016/j.autcon.2003.08.012.

DOI: 10.1016/j.autcon.2003.08.012

Google Scholar

[5] B. Panda, J.H. Lim, M.J. Tan, Mechanical properties and deformation behaviour of early age concrete in the context of digital construction, Compos. B Eng. 165 (2019) 563-571.

DOI: 10.1016/j.compositesb.2019.02.040

Google Scholar

[6] B. Panda, S. Chandra Paul, Tan M. Jen, Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Mater. Lett. 209 (2017) 146-149.

DOI: 10.1016/j.matlet.2017.07.123

Google Scholar

[7] B. Panda, S. Ruan, C. Unluer, M.J. Tan, Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay, Compos. B Eng. 165 (2019) 75-83.

DOI: 10.1016/j.compositesb.2018.11.109

Google Scholar

[8] B. Panda, Y.W.D. Tay, S.C. Paul, M.J. Tan Current challenges and future potential of 3D concrete printing: aktuelle Herausforderungen und Zukunftspotenziale des 3D-Druckens bei Beton, Mater. Werkst off tech. 49 (5) (2018) 666-673. 10.1002/mawe.201700279.

DOI: 10.1002/mawe.201700279

Google Scholar

[9] G. Ma, Z. Li, L. Wang, F. Wang, J. Sanjayan, Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing, Constr. Build Mater. 202 (2019) 770-783.

DOI: 10.1016/j.conbuildmat.2019.01.008

Google Scholar

[10] G. Ma, Z. Li, L.I. Wang, Printable properties of cementitious material containing copper tailings for extrusion based 3D printing, Constr. Build. Mater. 162 (2018) 613-627. 10.1016/j.conbuildmat.2017.12.051.

DOI: 10.1016/j.conbuildmat.2017.12.051

Google Scholar

[11] Geert De Schutter, Karel Lesage, Viktor Mechtcherine, Venkatesh Naidu Nerella, Guillaume Habert, Isolda Agusti-Juan, Vision of 3D printing with concrete — Technical, economic and environmental potentials, Cement and Concrete Research. 112 (2018) 25-36. 10.1016/j.cemconres.2018.06.001.

DOI: 10.1016/j.cemconres.2018.06.001

Google Scholar

[12] H. Nasir, H. Ahmed, C. Haas, P.M. Goodrum, An analysis of construction productivity differences between Canada and the United States, Constr. Manag. Econ. 32 (2013) 1-13. 10.1080/01446193.2013.848995.

DOI: 10.1080/01446193.2013.848995

Google Scholar

[13] H.W. Kang, D.W. Cho, Development of an indirect stereo lithography technology for scaffold fabrication with a wide range of biomaterial selectivity, Tissue Eng. Part C Methods 18 (9) (2012) 719-729.

DOI: 10.1089/ten.tec.2011.0621

Google Scholar

[14] J.-P. Kruth, P. Mercelis, J. Van Vaerenbergh, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyp. J. 11 (1) (2005) 26-36.

DOI: 10.1108/13552540510573365

Google Scholar

[15] J.R. Castrejon-Pita, W.R.S. Baxter, J. Morgan, S. Temple, G.D. Martin, I.M. Hutchings, Future, opportunities and challenges of Inkjet technologies, Atomization Sprays. 23 (2013) 541-565.

DOI: 10.1615/atomizspr.2013007653

Google Scholar

[16] Jan Mischke, Reinventing construction: a route to higher productivity, MCKinsey global institute, construction: let's build changes!, brussels, July 6, (2017).

Google Scholar

[17] L. Reiter, T. Wangler, N. Roussel, R.J. Flatt, The role of early age structural build-up in digital fabrication with concrete, Cem. Concr. Res. 112 (2018) 86-95.

DOI: 10.1016/j.cemconres.2018.05.011

Google Scholar

[18] M. Chen, L. Li, Y. Zheng, P. Zhao, L. Lu, X. Cheng, Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials, Constr. Build Mater. 189 (2018) 601-611.

DOI: 10.1016/j.conbuildmat.2018.09.037

Google Scholar

[19] M. Hambach, D. Volkmer, Properties of 3D-printed fiber-reinforced Portland cement paste, Cem. Concr. Compos. 79 (2017) 62-70.

DOI: 10.1016/j.cemconcomp.2017.02.001

Google Scholar

[20] M. Papachristoforou, V. Mitsopoulos, M. Stefanidou, Use of by-products for partial replacement of 3D printed concrete constituents; rheology, strength and shrinkage performance, Frattura ed Integrità Strutturale. 13 (50) (2019) 526-536.

DOI: 10.3221/igf-esis.50.44

Google Scholar

[21] N. Roussel, F. Cussigh, Distinct-layer casting of SCC: The mechanical consequences of thixotropy, Cem. Concr. Res. 38 (5) (2008) 624-632.

DOI: 10.1016/j.cemconres.2007.09.023

Google Scholar

[22] N. Roussel, Rheological requirements for printable concretes, Cem. Concr. Res. 112 (2018) 76-85.

Google Scholar

[23] P. Feng, X. Meng, J. Chen, L. Ye, Mechanical properties of structures 3D printed with cementitious powders, Constr. Build. Mater. 93 (2015) 486-497.

DOI: 10.1016/j.conbuildmat.2015.05.132

Google Scholar

[24] P. Shakor, J. Sanjayan, A. Nazari, S. Nejadi, Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing, Constr. Build. Mater. 138 (2017) 398-409. 10.1016/j.conbuildmat.2017.02.037.

DOI: 10.1016/j.conbuildmat.2017.02.037

Google Scholar

[25] Peng Wu, Jun Wang, Xiangyu Wang, A critical review of the use of 3-D printing in the construction industry, Automation in Construction. 68 (2016) 21-31. 10.1016/j.autcon.2016.04.005.

DOI: 10.1016/j.autcon.2016.04.005

Google Scholar

[26] R.A. Buswell, W.R. Leal de Silva, S.Z. Jones, J. Dirrenberger 3D printing using concrete extrusion: a roadmap for research, Cem. Concr. Res. 112 (2018) 37-49. 10.1016/j.cemconres.2018.05.006.

DOI: 10.1016/j.cemconres.2018.05.006

Google Scholar

[27] R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing, Cement and Concrete Research. 106 (2018) 103-116. 10.1016/j.cemconres.2018.02.001.

DOI: 10.1016/j.cemconres.2018.02.001

Google Scholar

[28] R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Hardened properties of 3D printed concrete: The influence of process parameters on interplay adhesion, Cem. Concr. Res. 119 (2019) 132-140.

DOI: 10.1016/j.cemconres.2019.02.017

Google Scholar

[29] S.G. Naoum, Factors influencing labor productivity on construction sites, Int. J. Product. Perform. Manag. 65 (2016) 401-421.10.1108/IJPPM-03-2015-0045.

Google Scholar

[30] Shaodan Hou, Zhenhua Duan, Jianzhuang Xiao, Jun Ye, A review of 3D printed concrete: Performance requirements, testing measurements and mix design, Construction and Building Materials. 273 (2021) 10. 1016/j.conbuildmat.2020.121745.

DOI: 10.1016/j.conbuildmat.2020.121745

Google Scholar

[31] T. Wangler, N. Roussel, F.P. Bos, T.A.M. Salet, R.J. Flatt Digital concrete: a review, Cem. Concr. Res. 123 (2019) 105780. 10.1016/j.cemconres.2019.105780.

DOI: 10.1016/j.cemconres.2019.105780

Google Scholar

[32] T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, A.G.F. Gibb, T. Thorpe, Mix design and fresh properties for high-performance printing concrete, Mater. Struct. 45 (8) (2012) 1221-1232.

DOI: 10.1617/s11527-012-9828-z

Google Scholar

[33] T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, R. Law, A.G.F. Gibb, et al., Hardened properties of high-performance printing concrete, Cem. Concr. Res. 42 (3) (2012) 558-566.

DOI: 10.1016/j.cemconres.2011.12.003

Google Scholar

[34] V.N. Nerella, M. Näther, A. Iqbal, M. Butler, V. Mechtcherine, Inline quantification of extrudability of cementitious materials for digital construction, Cem. Concr. Compos. 95 (2019) 260-270.

DOI: 10.1016/j.cemconcomp.2018.09.015

Google Scholar

[35] W. Long, J. Tao, C. Lin, Y. Gu, L. Mei, H. Duan, et al., Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing, J. Clean. Prod. 239 (2019) 118054.

DOI: 10.1016/j.jclepro.2019.118054

Google Scholar

[36] Y. Zhang, Y. Zhang, G. Liu, Y. Yang, M. Wu, B. Pang, Fresh properties of a novel 3D printing concrete ink, Constr. Build. Mater. 174 (2018) 263-271.

DOI: 10.1016/j.conbuildmat.2018.04.115

Google Scholar

[37] Z. Liu, M. Li, Y. Weng, T.N. Wong, M.J. Tan, Mixture design approach to optimize the rheological properties of the material used in 3D cementitious material printing, Constr. Build Mater. 198 (2019) 245-255.

DOI: 10.1016/j.conbuildmat.2018.11.252

Google Scholar