[1]
Sun, Qing, Jin-Xiong Zhou, and Ling Zhang. An adaptive beam model and dynamic characteristics of magnetorheological materials., Journal of Sound and Vibration 261.3 (2003): 465-481.
DOI: 10.1016/s0022-460x(02)00985-9
Google Scholar
[2]
Ruddy, C., E. Ahearne, and G. Byrne. A review of magnetorheological elastomers: properties and applications., Advanced Manufacturing Science (AMS) Research.pdf Accessed 20 (2012).
Google Scholar
[3]
Li, W. H., X. Z. Zhang, and H. Du. Magnetorheological elastomers and their applications., Advances in elastomers I. Springer, Berlin, Heidelberg, 2013. 357-374.
Google Scholar
[4]
Kattimani, Subhas Chandra, and M. C. Ray. Vibration control of multiferroic fibrous composite plates using active constrained layer damping., Mechanical Systems and Signal Processing 106 (2018): 334- 354.
DOI: 10.1016/j.ymssp.2017.12.039
Google Scholar
[5]
Lu, Jun, Pan Wang, and Zhenfei Zhan. Active vibration control of thin- plate structures with partial SCLD treatment., Mechanical Systems and Signal Processing 84 (2017): 531-550.
DOI: 10.1016/j.ymssp.2016.06.013
Google Scholar
[6]
Kumar, Ambesh, et al. Performance of a graphite wafer-reinforced vis- coelastic composite layer for active-passive damping of plate vibration., Composite Structures 186 (2018): 303-314.
DOI: 10.1016/j.compstruct.2017.12.019
Google Scholar
[7]
Aguib, Salah, et al. Dynamic behavior analysis of a magnetorheological elastomer sandwich plate., International Journal of Mechanical Sciences 87 (2014): 118-136.
DOI: 10.1016/j.ijmecsci.2014.05.014
Google Scholar
[8]
Lokander, Mattias, and Bengt Stenberg. Performance of isotropic magnetorheological rubber materials., Polymer Testing 22.3 (2003): 245-251.
DOI: 10.1016/s0142-9418(02)00043-0
Google Scholar
[9]
Li, W. H., and X. Z. Zhang. A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers., Smart Materials and Structures 19.3 (2010): 035002.
DOI: 10.1088/0964-1726/19/3/035002
Google Scholar
[10]
Lara-Prieto, Vianney, et al. Vibration characteristics of MR cantilever sandwich beams: experimental study., Smart Materials and structures 19.1 (2009): 015005.
DOI: 10.1088/0964-1726/19/1/015005
Google Scholar
[11]
Hu, Guoliang, et al. Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non- homogeneous small magnetic fields., Smart materials and structures 20.12 (2011): 127001.
DOI: 10.1088/0964-1726/20/12/127001
Google Scholar
[12]
Nayak, B., S. K. Dwivedy, and K. S. R. K. Murthy. Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions., Journal of Sound and Vibra- tion 330.9 (2011): 1837-1859.
DOI: 10.1016/j.jsv.2010.10.041
Google Scholar
[13]
Nayak, B.,S.K. Dwivedy, and K.S.R.K. Murthy. Multi-frequency excitation of magnetorheological elastomer-based sandwich beam with conductive skins., International Journal of Non-Linear Mechanics 47.5 (2012): 448-460.
DOI: 10.1016/j.ijnonlinmec.2011.08.007
Google Scholar
[14]
Yeh, Jia-Yi. Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment., Smart Materials and Structures 22.3 (2013): 035010.
DOI: 10.1088/0964-1726/22/3/035010
Google Scholar
[15]
Aguib, Salah, et al. Forced transverse vibration of composite sandwich beam with magnetorheological elastomer core., Journal of Mechanical Science and Technology 30.1 (2016): 15-24.
DOI: 10.1007/s12206-015-1202-y
Google Scholar
[16]
de Souza Eloy, Felipe, et al. Experimental dynamic analysis of composite sandwich beams with magnetorheological honeycomb core., Engineering Structures 176 (2018): 231-242.
DOI: 10.1016/j.engstruct.2018.08.101
Google Scholar
[17]
de Souza Eloy, Felipe, et al. A numerical experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honeycomb core., Composite Structures 209 (2019): 242-257.
DOI: 10.1016/j.compstruct.2018.10.041
Google Scholar