The Mechanical and Thermal Properties of MWCNT/ZnO/Polyethylene Composites

Article Preview

Abstract:

In this paper, multiwall carbon nanotube-ZnO (MWCNT/ZnO) was melt-blended with polyethylene (PE) by a Haake-Buchler Rheomixer. The mechanical properties, thermal stability and dispersion degree of the composite materials was characterized. Differential scanning calorimetry, X-ray diffraction analysis, thermogravimetry, tensile test and SEM were carried out. The results showed that with the addition of MWCNT/ZnO, the crystallinity and thermal degradation temperature of PE changed. 0.2phr MWCNT/ZnO/PE exhibited crystallinity that was 10% higher than PE. With the addition of MWCNT/ZnO, the tensile strength of PE decreased gradually, but the elongation at break increased first and then decreased. When MWCNT/ZnO content is 0.2phr, the elongation at break of the composite is close to 532.21%, which is 116% higher than that of pure PE.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1047)

Pages:

9-14

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sumio and Iijima: Nature. Vol. 354 (1991), p.56.

Google Scholar

[2] C.H. Tsou, W.H. Yao, W.S. Hung, M.C. Suen, M. De Guzman, J. Chen, C.Y. Tsou, R.Y. Wang, J.C. Chen and C.S. Wu: Ind. Eng. Chem. Res. Vol. 57 (2018), p.2537.

DOI: 10.1021/acs.iecr.7b04693

Google Scholar

[3] C.H. Tsou, C.S. Wu, W.S. Hung, M.R. De Guzmana, C. Gao, R.Y. Wang, J. Chen, N. Wan, Y.J. Peng and M.C. Suen: Polymer. Vol. 160 (2019), p.265.

Google Scholar

[4] N.T. Dintcheva, F.P. La Mantia and V. Malatesta: Polym. Degrad. Stab. Vol. 94 (2009), p.162.

Google Scholar

[5] S. Barus, M. Zanetti, P. Bracco, S. Musso, A. Chiodoni and A. Tagliaferro: Polym. Degrad. Stab. Vol. 95 (2010), p.756.

Google Scholar

[6] J.L. Liu, Y.H. Wang, J.Z. Ma, Y. Peng and A. Wang: J. Alloys Compd. Vol. 783 (2019), p.898.

Google Scholar

[7] M. Rahman, S. Laurent, N Tawil, L. Yahia and M Mahmoudi: The Bio-Nano Interface. Springer-Verlag. Vol. 15 (2013), p.21.

Google Scholar

[8] H. Ma, N.J. Kabengi, P.M. Bertsch, J.M. Unrine, T.C. Glenn and P.L. Williams: Environ. Pollut. Vol. 159 (2011). p.1473.

Google Scholar

[9] H. Li and X.M. Xie: Chin Chem. Lett. Vol. 29 (2018), p.161.

Google Scholar

[10] B. Ghafoor, M.S. Mehmood, U. Shahid, M.A. Baluch and T. Yasin: Radiat. Phys. Chem. Vol. 125, (2016), p.145.

Google Scholar

[11] S. Shi, L. Wang, Y. Pan, C. Liu, X. Liu, Y. Li, J. Zhang, G. Zheng and Z. Guo: Composites, Part B. Vol. 167 (2019), p.362.

Google Scholar

[12] B.J. Kim, K.M. Bae, M.K. Seo, K.H. An and S.J. Park: Mater. Sci. Eng A. Vol. 528(2011), p.4953.

Google Scholar

[13] R. Jeziorska, A. Szadkowska, M. Zielecka, M. Wenda and B. Kepska: Polym. Degrad. Stab. Vol. 145 (2017), p.70.

Google Scholar

[14] N.A. Ismail, K.A.M. Amin, F.A.A. Majid and M.H. Razali: Mater. Sci. Eng C. Vol. 103 (2019), p.109770.

Google Scholar

[15] C.H. Tsou, W.H. Yao, C.S. Wu, et al. J. Polym. Res. Vol. 26 (2019)p.227–237.

Google Scholar