Fatigue Property of Welded T-Shaped Joints Using the Structural Stress Method

Article Preview

Abstract:

Various types of welded joints are of wide application in industrial and productional regions, including T-shaped, butt, and fillet joints of steel, stainless steel, and cast steel. Under cyclic fatigue load, the fatigue performance of welded joints is significant for the engineering design and it’s of interest to investigate the fatigue property of the welded joints using the recommended prediction methods. In this paper, the fatigue performance of welded T-shaped joints is investigated. The mesh-insensitive property of the structural stress method is validated with the comparison of various prediction methods. The fatigue cyclic life of welded T-shaped joints under tensile loads is analyzed. The structural stress curve of T-shaped joints with various base metal thicknesses is determined for the engineering design.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1047)

Pages:

68-73

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shen, S. Recent advances on the fundamental research of spatial structures in China. Journal of the International Association for Shell and Spatial Structures, 2006. 47(1): pp.93-100.

Google Scholar

[2] Dong, P., A structural stress definition and numerical implementation for fatigue analysis of welded joints. International Journal of Fatigue, 2001. 23(10): pp.865-876.

DOI: 10.1016/s0142-1123(01)00055-x

Google Scholar

[3] Dong, P., Z. Wei and J.K. Hong, A path-dependent cycle counting method for variable-amplitude multi-axial loading. International Journal of Fatigue, 2010. 32(4): pp.720-734.

DOI: 10.1016/j.ijfatigue.2009.10.010

Google Scholar

[4] Jorge A.R.D. and J.R.D.C. Dionisio, An evaluation of the nominal stress method for life prediction of cylindrical circumferential V-notched specimens tested under variable amplitude loading. 2016: Incheon,Korea. p.1.

DOI: 10.4028/www.scientific.net/amm.851.310

Google Scholar

[5] Susmel, L. and R. Tovo, On the use of nominal stresses to predict the fatigue strength of welded joints under biaxial cyclic loading. Fatigue & Fracture of Engineering Materials & Structures, 2010. 27(11): pp.1005-1024.

DOI: 10.1111/j.1460-2695.2004.00814.x

Google Scholar

[6] Aygul, M., M. Al-Emrani and S. Urushadze, Modelling and fatigue life assessment of orthotropic bridge deck details using FEM. International Journal of Fatigue, 2012. 40: pp.129-142.

DOI: 10.1016/j.ijfatigue.2011.12.015

Google Scholar

[7] Kim, M. and S. Kang, Testing and analysis of fatigue behaviour in edge details: a comparative study using hot spot and structural stresses. Kyobu Geka the Japanese Journal of Thoracic Surgery, 2008. 61(4): pp.331-4.

Google Scholar

[8] Hyuba, H and Dong,P. Equilibrium-Equivalent Structural Stress Approach to Fatigue Evaluation of a Rectangular Hollow Section Joint. International Journal of Fatigue, 2005. 27(1): pp.85-100.

DOI: 10.1016/j.ijfatigue.2004.05.008

Google Scholar

[9] Gates, N. and A. Fatemi, Fatigue crack growth behavior in the presence of notches and multiaxial nominal stress states. Engineering Fracture Mechanics, 2016. 165: pp.24-38.

DOI: 10.1016/j.engfracmech.2016.08.017

Google Scholar

[10] Kang, H., P. Dong and J. Hong, Fatigue analysis of spot welds using a mesh-insensitive structural stress approach. International Journal of Fatigue, 2007. 29(8): pp.1546-1553.

DOI: 10.1016/j.ijfatigue.2006.10.025

Google Scholar

[11] Xiao, Z.G., et al., Fatigue cracks in longitudinal ribs of steel orthotropic deck. International Journal of Fatigue, 2006. 28(4): pp.409-416.

DOI: 10.1016/j.ijfatigue.2005.07.017

Google Scholar

[12] Xiao, Z.G., et al., Stress analyses and fatigue evaluation of rib-to-deck joints in steel orthotropic decks. International Journal of Fatigue, 2008. 30(8): pp.1387-1397.

DOI: 10.1016/j.ijfatigue.2007.10.008

Google Scholar

[13] BuAr T , Nagode M , Fajdiga M . A neural network approach to describing the scatter of S–N curves. International Journal of Fatigue, 2006. 28(4): pp.311-323.

DOI: 10.1016/j.ijfatigue.2005.08.002

Google Scholar

[14] Yang HB, et al. Fatigue behavior of typical details of orthotropic steel bridges in multiaxial stress states using traction structural stress [J]. International Journal of Fatigue, 2020. 141(12): pp.1-16.

DOI: 10.1016/j.ijfatigue.2020.105862

Google Scholar

[15] Yang HB, et al. Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress [J]. Steel and composite structures, 2021. 38(3): pp.271-280.

Google Scholar

[16] Yang HB, et al. Fatigue property of U rib-crossbeam-deck connections in OBD under combined loading of bending and torsion [J]. Theoretical and applied fracture mechanics, 2021. 112(1): pp.1-20.

DOI: 10.1016/j.tafmec.2020.102889

Google Scholar

[17] Yang HB, et al. Fatigue Performance of Different Rib-To-Deck Connections Using Traction Structural Stress Method [J]. Applied Sciences, 2020. 4(1): pp.1-16.

DOI: 10.3390/app10041239

Google Scholar

[18] Haibo Yang. Performance analysis of semi-rigid connections in prefabricated high-rise steel structures [J]. Structures, 2020. 12(12): pp.1-20.

DOI: 10.1016/j.istruc.2020.09.036

Google Scholar

[19] Yang HB, et al. Analysis of fatigue behavior of welded joints in orthotropic bridge deck using traction structural stress [J]. Advances in Mechanical Engineering, 2019. 11(11): pp.14-30.

DOI: 10.1177/1687814019890217

Google Scholar

[20] Wang P, et al. Traction structural stress analysis of fatigue behaviors of rib-to-deck joints in orthotropic bridge deck. International Journal of Fatigue, 2019. 125(1): pp.11-22.

DOI: 10.1016/j.ijfatigue.2019.03.038

Google Scholar