Characterization and Hydrogen Storage Capacity Analysis of Dip Coated Lithium Aluminium Hydride Thin Films

Article Preview

Abstract:

Complex metal hydrides are one of the most effective hydrogen storage materials due to their unique property to absorb and desorb hydrogen with the hydrogen storage capacity of about 5-7 wt%. In this study, lithium aluminium hydride (LiAlH4) was coated on glass substrate using dip coating method. The coating conditions investigated were LiAlH4 concentrations of 6 g/l, 10 g/l and 20 g/l and post-annealing time from 0 to 60 min. Phase and grain size of the deposited LiAlH4 were analyzed using X-ray powder diffraction (XRD). Scanning electron microscope (SEM) was used for surface morphology analysis. The hydrogen storage capacity of the deposited thin films was analyzed using thermogravimetric analysis (TGA). The experimental results revealed that the phase of the deposited LiAlH4 thin films on glass substrate were mixed with lithium aluminium hydroxide hydrate (LiAl2(OH)7·2H2O) and lithium hexahydroaluminate (Li3AlH6). The intensity of the LiAl2(OH)7·2H2O and LiAlH4 peaks tends to decrease with increasing LiAlH4 concentration and post-annealing time while the intensity of the Li3AlH6 peaks increased with increasing LiAlH4 concentration and post-annealing time. The grain size was decreased with increasing LiAlH4 concentration and post-annealing time. The smaller grain size the better the hydrogen storage capacity. The hydrogen storage capacity of the deposited LiAlH4 thin film was increased from 0.124 wt % using LiAlH4 concentration of 6 g/l without post-annealing to 1.675 wt % using LiAlH4 concentration of 20 g/l with 60 min post-annealing time.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1047)

Pages:

90-96

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.M. Ley, L.H. Jepsen, S.Y. Lee, Y.W. Cho, J.M. Bellosta von Colbe, M. Dornheim, M. Rokni, J.O. Jensen, M. Sloth, Y. Filinchuk, E. J. Jorgensen, F. Besenbacher and T.R. Jensen: Mater. Today vol. 17 (2014), p.122 – 128.

DOI: 10.1016/j.mattod.2014.02.013

Google Scholar

[2] B. Abderezzak: Introduction to Transfer Phenomena in PEM Fuel Cell (UK: Elsevier 2018).

Google Scholar

[3] V. Schroeder and K. Holtappels: Explosion Characteristics of Hydrogen-air and Hydrogen-Oxygen Mixtures at Elevated Pressures (Berlin: Germany 2005).

Google Scholar

[4] B.P. Darren: Green Energy and Technology (UK: Verlag London 2011).

Google Scholar

[5] J. Liu and W. Zhang: Topics in Catalysis vol. 56 (2013), pp.18-20.

Google Scholar

[6] T. K. Moller, D. Sheppard, B. D. Ravnsbaek, C. E. Buckely, E. Akiba, W. H. Li and J. R. Torben: Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage (Switzerland: Basel 2017).

Google Scholar

[7] I. Milanovia, S. Milosevic, L. Matovic, R. Vujasin, N. Novakovic, R. Checchetto and N. J. Grbovic: Hydrogen Energy vol. 38 (2013), pp.12152-12158.

Google Scholar

[8] A. Andreasen, T. Vegge and S. A. Pedersen: J. Solid State Chem vol. 178 (2005), pp.3672-3678.

Google Scholar

[9] R. J. Fernandeza, F. Aguey-Zinsou, M. Elsaesser, X. Z. Ma, M. Dornheim, T. Klaseen and R. Bormann: Int. J. Hydrog. Energy vol. 32 (2007), p.1033 – 1040.

Google Scholar

[10] Y. Yang, M. Gao, Y. Liu, J. Wang, J. Gu, H. Pan and Z. Guo: Int. J. Hydrog. Energy vol. 37 (2012), pp.10733-10742.

Google Scholar

[11] M. Filippi, H. J. Rector, R. Gremaud, J. M. Van Setten and B. Dam: Appl. Phys. Lett vol. 95 (2009), p.121904.

DOI: 10.1063/1.3236525

Google Scholar

[12] W. Lei, A. Rawal, Z. M. Quadir and F. K. Aguey Zinsou: Int. J. Hydrog. Energy vol. 42 (2017), p.14144 – 14153.

DOI: 10.1016/j.ijhydene.2017.04.104

Google Scholar

[13] S. Liu, L. Sun, Y. Zhang, F. Xu, J. Zhang, H. Chu, M. Fan, T. Zhang, X. Song and R. J. Grolier: Int. J. Hydrog. Energy vol. 34 (2009), p.8079 – 8085.

Google Scholar

[14] J. Graetz, J. Wegrzyn and J. J. Reilly: J. Am. Chem. Soc vol. 130 (2008), p.17790 – 17794.

DOI: 10.1021/ja805353w

Google Scholar

[15] T. Sakai, H. Ishikawa, H. Miyamura and N. Kuriyam: J. Electrochem. Soc vol. 138 (2015), p.4.

Google Scholar

[16] B. Bonnetot, P. Claudy, M. Diot and M. J. Letoffe: J. Chem. Thermodyn vol. 11 (1979) pp.1197-1202.

Google Scholar

[17] P. J. Thiel, K. C. Chiang and R. K. Poeppelmeier: Chem. Mater vol. 5 (1993) p.297 – 304.

Google Scholar

[18] J. K. Gross, R. K. Carrington, S. Barcelo, A. Karkamkar, J. Purewal, S. Ma and Z. Hong-cai, P. Dantzer, K. Ott, T. Burrell, T. Semeslberger, Y. Pivak, B. Dam and D. Chandra: Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials (Washington: DC 2012).

Google Scholar

[19] B. Wang, Y. Chen, L. Wang and Y. Liu: hydrogen storage alloy J. Alloys Compd vol. 541 (2012) p.305 – 309.

Google Scholar

[20] C. V. Thompson: Annu. Rev. Mater. Sci vol. 20 (1990) pp.245-268.

Google Scholar

[21] W. F.L. Armarego: Purification of Laboratory Chemicals (Canberra: Australia 2017).

Google Scholar