New Formulation of TiO2- ZnO Slurry for Facial Foundation Sunscreen Cream Application

Article Preview

Abstract:

The objective of this research was to prepare ready-to-use TiO2 and ZnO in slurry form for ready-to-use in facial foundation sunscreen. Two types of TiO2 sources were prepared as TiO2 slurry namely commercial TiO2 powder and synthesized TiO2 powder. Preparation of formula 1, 35 g solution PEG-10 dimethicone, and added 20 g solution cyclomethicone after that 45 g TiO2 powder was added slowly to the prepared substance, stirring and heated to 60-70 °C, and stir until the substance mix well. Formula 2, 46 g solution cyclomethicone added 2.5 g stearic acid and 2 g aluminum hydroxide after that stirring and heated to 60-70 °C until the substance mixed well, and TiO2 powder 49.5 g was added slowly to the continuous stirred and heated. On the other hand, ZnO slurry was prepared in the same steps. The results show that formula 1was the best formulation. Due to it was not precipitation and good compatibility with an emulsifier, therefore, formula 1was chosen to study in various volumes. The texture and stability of the prepared slurry were similar to the commercial slurry. Two sunscreen formulas were differently formulated by containing prepared and commercial slurry and evaluated. There were no significant differences in results between prepared slurry and commercial slurry. To investigate the satisfaction of products, 30 volunteers were asked to use products for one week and answer the questionnaires. The product containing prepared slurry was satisfied by 93.33% of volunteers, whereas the product containing commercial slurry was satisfied by 76.66% of volunteers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1047)

Pages:

103-110

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv).

Google Scholar

[2] J. L. S. Acosta, F. M. Santoyo, J. M. F. Moreno, M. S. H. Montes, M. H. T. Ibarra, G. Frausto, S M. Silvino, E. E. L. Hernández: Opt. Lasers Eng. Vol. 137 (2020), p.106345.

Google Scholar

[3] N. Serpone, A. Salinaro, S. Horikoshi, H. Hidaka: J. Photochem. Photobiol., A Vol. 179 (2006) p.200.

Google Scholar

[4] L. H. F. Mullenders: Photochem. Photobiol. Sci. Vol. 17(12) (2018), p.1842.

Google Scholar

[5] M. Ichihashi, M. Ueda, A. Budiyanto, T. Bito, M. Oka, M. Fukunaga, K. Tsuru, T. Horikawa. Toxicology Vol. 189 (2003), p.21.

DOI: 10.1016/s0300-483x(03)00150-1

Google Scholar

[6] C. M.-Edinger: 9 Focus Technology – Sunscreens, Handbook of UV Degradation and Stabilization (Third Edition) (2020).

Google Scholar

[7] J. J. Reinosa, C. M. Á. Docio, V. Z. Ramírez, J. Francisco, F. L. Hierarchical: Ceramics Int. Vol. 44 (2018), p.2827.

Google Scholar

[8] S. S. Fouad, B. Parditka, M. Nabil, E. Baradács, S. Negm, H. E. Atyia, Z. Erdélyi: Optik Vol. 233 (2021), p.166617.

DOI: 10.1016/j.ijleo.2021.166617

Google Scholar

[9] J. Fang, A. Shijirbaatar, D. Lin, D. Wang, B. Shen, P. Sun, Z. Zhou: Chemosphere Vol. 184 (2017), p.1125.

Google Scholar

[10] H. K. Singh, S. Kumar, J. Bamne, K. Taiwade, N. Singh, V. Chandel, F. Z. Haque: Mater. Today (2020), in press.

Google Scholar

[11] E.M. Balboa, M.L. Soto, D.R. Nogueira, N. González-López, E. Conde, A. Moure, M.P., Vinardell, M. Mitjans, H. Domínguez: Ind. Crops Prod. Vol. 58, (2014), p.104.

DOI: 10.1016/j.indcrop.2014.03.041

Google Scholar

[12] L. López-Hortasa , E. Condeb , E. Falquéc , H. Domíngueza , M.D. Torres: Industrial Crops & Products Vol. 145 (2020), p.112079.

Google Scholar

[13] V. H. P. Infante, P. M. B. G. Mai, Campos, L.S. Calixto, M. E. Darvin, M. Kröger, S. Schanzer, S.B. Lohan, J. Lademann, M. C. Meinke: Inter. J. Pharma. Vol. 598 (2021), p.120262.

DOI: 10.1016/j.ijpharm.2021.120262

Google Scholar

[14] R. C. Romanhole, A. L. M. Fava, L. L. Tundisi, L. M. deMacedo, É. M. Santos, J. A. Ataide, P. G. Mazzola: Inter. J. Pharma. Vol. 591 (2020), p.120013.

DOI: 10.1016/j.ijpharm.2020.120013

Google Scholar

[15] C. Berkey, N. Oguchi, K. Miyazawa, R. Dauskardt: Biochem. Biophys. Rep. Vol. 19 (2019), p.1006573.

Google Scholar

[16] C.-Y. Ho, J. K. Lin, H.-W. Wang: Inter. J. Photoenerg. (2015), p.1.

Google Scholar

[17] G. Gohari, A. Mohammadi, A. Akbari, S. Panahirad, M. R. Dadpour, V. Fotopoulos, S. Kimura: Sci. Rep. Vol. 10 (2020), p.912.

Google Scholar

[18] K. K. Taha, M.A. Zoman, M.A. Outeibi, S. Alhussain, A.M. Abdulaziz, A. Bagabas: Nanotech. Environ. Eng. (2019), p.4.

Google Scholar

[19] A. Dhanalakshmi, B. Natarajan, V. Ramadas, A. Palanimurugan, S. Thanikaikarasan: Pramana–J. Phys. Vol. 87:57 (2016), p.1.

DOI: 10.1007/s12043-016-1248-0

Google Scholar

[20] L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A. J. O'Neill, David W. York, J. Nanopart. Res. Vol. 12 (2010), p.1625.

Google Scholar

[21] L. Zhang, Y. Ding, M. Povey, D. York: Prog. Nat. Sci. Vol. 18 (2008), p.939.

Google Scholar

[22] X. Lu, X. Lv, Z. Sun, Y. Zheng: Eur. Polym. J. Vol. 44 (2008), p.2476.

Google Scholar

[23] P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam: Spectrochim. Acta, Part A Vol. 117 (2014), p.622.

Google Scholar

[24] A. Taufq, H. N. Ulya, U. J Sunaryono, N. Hidayat, H. Susanto, N. M. Munasir, S. Soontaranon: IOP Conf. Series: J. Physics: Conf. Series Vol. 1093 (2018), p.012001.

DOI: 10.1088/1742-6596/1093/1/012001

Google Scholar

[25] S. W. Balogun, O. O. James, Y. K. Sanusi, O. H. Olayinka: SN Appl. Sci. Vol. 2 (2020), p.504.

Google Scholar

[26] T. Gutul1, E. Rusu, N. Condur, V. Ursaki, E. Goncearenco, P. Vlazan: Beilstein J. Nanotechnol. Vol. 5 (2014), p.402.

DOI: 10.3762/bjnano.5.47

Google Scholar

[27] R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng, J. Ding, Powder Technology Vol. 189 (2009), p.426.

Google Scholar