[1]
Y.M. Niquet, C. Delerue, G. Allan, and M. Lannoo, Method for tight-binding parameterization: application to silicon nanostructures, Phys. Rev. 62, 5109–5116 (2000).
DOI: 10.1103/physrevb.62.5109
Google Scholar
[2]
G. Grosso and C. Piermarocchi, Tight-binding model and interaction scaling laws for silicon and germanium, Phys. Rev. B 51, 16772–16777 (1995).
DOI: 10.1103/physrevb.51.16772
Google Scholar
[3]
F.E. Doany and D. E. Grischkowsky, Measurement of ultraf ast hot-carrier relaxation in silicon by thin film enhanced, time-resolved reflectivity, Appl. Phys. Lett. 52, 36–38 (1988).
DOI: 10.1063/1.99309
Google Scholar
[4]
Melanie Budde, Daniel Splith, Piero Mazzolini, Abbes Tahraoui, Johannes Feldl, Manfred Ramsteiner, Holger von Wenckstern, Marius Grundmann, Oliver Bierwagen, SnO/β-Ga2O3 vertical pn heterojunction diodes, Applied Physics Letters, 117:25, 252106 (2020).
DOI: 10.1063/5.0031442
Google Scholar
[5]
Kate M. Adkison, Shun-Li Shang, Brandon J. Bocklund, Detlef Klimm, Darrell G. Schlom, Zi-Kui Liu, Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis, APL Materials 8:8, 081110 (2020).
DOI: 10.1063/5.0013159
Google Scholar
[6]
C. Tserbak, H. M. Polatoglou, and G. Theodorou, Unified approach to the electronic structure of strained Si/Ge superlattices, Phys. Rev. B 47, 7104–7124 (1993).
DOI: 10.1103/physrevb.47.7104
Google Scholar
[7]
K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor, Science 2003, 300, 1269-1272.
DOI: 10.1126/science.1083212
Google Scholar
[8]
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 2004, 432, 488–492.
DOI: 10.1038/nature03090
Google Scholar
[9]
J. Sheng, H. Jeong, K. Han, T. Hong, J. Park, Review of recent advances in flexible oxide semiconductor thin-film transistors, J. Inf. Disp. 2017, 18, 159–172.
DOI: 10.1080/15980316.2017.1385544
Google Scholar
[10]
E. Fortunato, P. Barquinha, R. Martins, Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, Adv. Mater. 2012, 24, 2945–2986.
DOI: 10.1002/adma.201103228
Google Scholar
[11]
X. Yu, T. Marks, A. Facchetti, Metal oxides for optoelectronic applications, Nat. Mater. 2016, 15, 383–396.
DOI: 10.1038/nmat4599
Google Scholar
[12]
A. Liu, H. Zhu, H. Sun, Y. Xu, Y. Noh, Solution Processed Metal Oxide High-κ Dielectrics for Emerging Transistors and Circuits. Adv. Mater. 2018, 30, 1–39.
DOI: 10.1002/adma.201706364
Google Scholar
[13]
G. N. Koskowich, M. Soma, and R. B. Darling, Near-infrared free-carrier optical absorption in silicon: effect of first-order phonon-assisted scattering in a non-parabolic conduction band, Phys. Rev. B 41, 2944–2947 (1990).
DOI: 10.1103/physrevb.41.2944
Google Scholar
[14]
C. Jacoboni, R. Minder, and G. Majni, Effects of band nonparabolocity on electron drift velocity in silicon above room temperature, J. Chem. Phys. Solids 36, 1129–1133 (1975).
DOI: 10.1016/0022-3697(75)90055-4
Google Scholar
[15]
T. Sjodin, H. Petek, and H.-L. Dai, Ultrafast carrier dynamics in silicon: a two-color transient-reflection grating study on a (111) surface, Phys. Rev. Lett. 81, 5664–5667 (1998).
DOI: 10.1103/physrevlett.81.5664
Google Scholar
[16]
K.A. Stewart, B.-S. Yeh, and J.F. Wager, Amorphous semiconductor mobility limits, J. Non-Cryst. Solids (2015), http://dx.doi.org/10.1016/j.jnoncrysol.2015.10.005.
Google Scholar
[17]
Kevin Stewart (2016), Amorphous Semiconductor Transport Simulator,, https://nanohub.org/ resources/asts. (.
Google Scholar
[18]
Tiwari, D.L., Sivasankaran, K. NDR Behavior of a Phosphorous-Doped Double-Gate MoS2 Armchair Nanoribbon Field Effect Transistor. Journal of Elec Materi 49, 551–558 (2020). https://doi.org/10.1007/s11664-019-07806-2.
DOI: 10.1007/s11664-019-07806-2
Google Scholar
[19]
Tiwari, D. L.; Sivasankaran, K. Impact of substrate on performance of band gap engineered graphene field effect transistor. Superlattices Microstruct. 2018, 113, 244– 254,.
DOI: 10.1016/j.spmi.2017.11.004
Google Scholar
[20]
Durgesh LaxmanTiwari, K.Sivasankaran , Impact of carrier concentration and bandgap on the performance of double gate GNR-FET, Volume 130, June 2019, Pages 38-49, https://doi.org/10.1016/j.spmi.2019.04.019.
DOI: 10.1016/j.spmi.2019.04.019
Google Scholar
[21]
Durgesh LaxmanTiwari, K.Sivasankaran, Nitrogen-doped NDR behavior of double gate graphene field effect transistor, Volume 136, December 2019, 106308, https://doi.org/10.1016/ j.spmi.2019.106308.
DOI: 10.1016/j.spmi.2019.106308
Google Scholar