Temperature Dependent Carrier Transport in Hydrogenated Amorphous Semiconductors for Thin Film Memristive Applications

Article Preview

Abstract:

This paper demonstrates the transport of electron and hole carriers in two distinct hydrogenated amorphous semiconductor materials at different temperatures. Compared to crystalline materials, the amorphous semiconductors differ structurally, optically and electrically, hence the nature of carrier transport through such amorphous materials differ. Materials like hydrogenated amorphous silicon and amorphous IGZO have been used for the study of temperature dependent carrier transport in this paper. Simulation results have been presented to show the variation of free electron and hole concentration, trapped electron and hole concentration with energy at 300K for both the materials. The change in mobility with a change in the Fermi level has been plotted for different temperatures. The effect of temperature on Brownian motion mobility of electrons and holes in hydrogenated amorphous silicon and amorphous IGZO has been demonstrated towards the end of this paper.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1048)

Pages:

182-188

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.M. Niquet, C. Delerue, G. Allan, and M. Lannoo, Method for tight-binding parameterization: application to silicon nanostructures, Phys. Rev. 62, 5109–5116 (2000).

DOI: 10.1103/physrevb.62.5109

Google Scholar

[2] G. Grosso and C. Piermarocchi, Tight-binding model and interaction scaling laws for silicon and germanium, Phys. Rev. B 51, 16772–16777 (1995).

DOI: 10.1103/physrevb.51.16772

Google Scholar

[3] F.E. Doany and D. E. Grischkowsky, Measurement of ultraf ast hot-carrier relaxation in silicon by thin film enhanced, time-resolved reflectivity, Appl. Phys. Lett. 52, 36–38 (1988).

DOI: 10.1063/1.99309

Google Scholar

[4] Melanie Budde, Daniel Splith, Piero Mazzolini, Abbes Tahraoui, Johannes Feldl, Manfred Ramsteiner, Holger von Wenckstern, Marius Grundmann, Oliver Bierwagen, SnO/β-Ga2O3 vertical pn heterojunction diodes, Applied Physics Letters, 117:25, 252106 (2020).

DOI: 10.1063/5.0031442

Google Scholar

[5] Kate M. Adkison, Shun-Li Shang, Brandon J. Bocklund, Detlef Klimm, Darrell G. Schlom, Zi-Kui Liu, Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis, APL Materials 8:8, 081110 (2020).

DOI: 10.1063/5.0013159

Google Scholar

[6] C. Tserbak, H. M. Polatoglou, and G. Theodorou, Unified approach to the electronic structure of strained Si/Ge superlattices, Phys. Rev. B 47, 7104–7124 (1993).

DOI: 10.1103/physrevb.47.7104

Google Scholar

[7] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor, Science 2003, 300, 1269-1272.

DOI: 10.1126/science.1083212

Google Scholar

[8] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 2004, 432, 488–492.

DOI: 10.1038/nature03090

Google Scholar

[9] J. Sheng, H. Jeong, K. Han, T. Hong, J. Park, Review of recent advances in flexible oxide semiconductor thin-film transistors, J. Inf. Disp. 2017, 18, 159–172.

DOI: 10.1080/15980316.2017.1385544

Google Scholar

[10] E. Fortunato, P. Barquinha, R. Martins, Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, Adv. Mater. 2012, 24, 2945–2986.

DOI: 10.1002/adma.201103228

Google Scholar

[11] X. Yu, T. Marks, A. Facchetti, Metal oxides for optoelectronic applications, Nat. Mater. 2016, 15, 383–396.

DOI: 10.1038/nmat4599

Google Scholar

[12] A. Liu, H. Zhu, H. Sun, Y. Xu, Y. Noh, Solution Processed Metal Oxide High-κ Dielectrics for Emerging Transistors and Circuits. Adv. Mater. 2018, 30, 1–39.

DOI: 10.1002/adma.201706364

Google Scholar

[13] G. N. Koskowich, M. Soma, and R. B. Darling, Near-infrared free-carrier optical absorption in silicon: effect of first-order phonon-assisted scattering in a non-parabolic conduction band, Phys. Rev. B 41, 2944–2947 (1990).

DOI: 10.1103/physrevb.41.2944

Google Scholar

[14] C. Jacoboni, R. Minder, and G. Majni, Effects of band nonparabolocity on electron drift velocity in silicon above room temperature, J. Chem. Phys. Solids 36, 1129–1133 (1975).

DOI: 10.1016/0022-3697(75)90055-4

Google Scholar

[15] T. Sjodin, H. Petek, and H.-L. Dai, Ultrafast carrier dynamics in silicon: a two-color transient-reflection grating study on a (111) surface, Phys. Rev. Lett. 81, 5664–5667 (1998).

DOI: 10.1103/physrevlett.81.5664

Google Scholar

[16] K.A. Stewart, B.-S. Yeh, and J.F. Wager, Amorphous semiconductor mobility limits, J. Non-Cryst. Solids (2015), http://dx.doi.org/10.1016/j.jnoncrysol.2015.10.005.

Google Scholar

[17] Kevin Stewart (2016), Amorphous Semiconductor Transport Simulator,, https://nanohub.org/ resources/asts. (.

Google Scholar

[18] Tiwari, D.L., Sivasankaran, K. NDR Behavior of a Phosphorous-Doped Double-Gate MoS2 Armchair Nanoribbon Field Effect Transistor. Journal of Elec Materi 49, 551–558 (2020). https://doi.org/10.1007/s11664-019-07806-2.

DOI: 10.1007/s11664-019-07806-2

Google Scholar

[19] Tiwari, D. L.; Sivasankaran, K. Impact of substrate on performance of band gap engineered graphene field effect transistor. Superlattices Microstruct. 2018, 113, 244– 254,.

DOI: 10.1016/j.spmi.2017.11.004

Google Scholar

[20] Durgesh LaxmanTiwari, K.Sivasankaran , Impact of carrier concentration and bandgap on the performance of double gate GNR-FET, Volume 130, June 2019, Pages 38-49, https://doi.org/10.1016/j.spmi.2019.04.019.

DOI: 10.1016/j.spmi.2019.04.019

Google Scholar

[21] Durgesh LaxmanTiwari, K.Sivasankaran, Nitrogen-doped NDR behavior of double gate graphene field effect transistor, Volume 136, December 2019, 106308, https://doi.org/10.1016/ j.spmi.2019.106308.

DOI: 10.1016/j.spmi.2019.106308

Google Scholar