Traditional Peruvian Medicine: An Insight in Geophagy and Machu Rumi Intake

Article Preview

Abstract:

Geophagists are generally defined by culture, social status and gender, and this paper is to identify the chemical elements of the geophagic material called Machu Rumi. The sample was extracted from the center of the geophagic material. Two micrographs were observed, the 1c micrograph contains: O (8.63%), Al (14.85%), SiO2 (33.07%), Fe (5.93%), K (5.36%), Mg (1.37 %) and Ca (0.81%), these elements are characteristics of the clay minerals, the 1d micrograph, contains: oxygen 62.14%, Silicon 37.80% and Aluminum 0.06%, these elements are present in the clay minerals soils. The results of elemental composition and micromorphology reveals the presence of phyllosilicates, SiO2, Fe, K, Mg, Ca, and Al so the consumption of Machu Rumi would contribute to the benefic geophagy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1048)

Pages:

423-428

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Halsted, Geophagia in man: its nature and nutritional effects., J. Nutr. 21 (1968) 1384–93.

Google Scholar

[2] P.W. Abrahams, J.A. Parsons, Geophagy in the tropics, A Lit. Rev. 162 (1996) 63–72.

Google Scholar

[3] B. Anell, S. Lagercrantz, Geophagical customs, first, (1958).

Google Scholar

[4] C. Frazzoli, G. Bertrand, A. Mantovani, O. Ebere, Science of the Total Environment Health risks from lost awareness of cultural behaviours rooted in traditional medicine : An insight in geophagy and mineral intake, Sci. Total Environ. 566–567 (2016) 1465–1471.

DOI: 10.1016/j.scitotenv.2016.06.028

Google Scholar

[5] M. Nchito, P.W. Geissler, L. Mubila, H. Friis, A. Olsen, Effects of iron and multimicronutrient supplementation on geophagy : a two-by-two factorial study among Zambian schoolchildren in Lusaka, Trans. R. Soc. Trop. Med. Hyg. 98 (2004) 218–227.

DOI: 10.1016/s0035-9203(03)00045-2

Google Scholar

[6] R. Reid, Cultural and medical perspectives on geophagia., Med Anthr. 13 (1992) 337–51.

Google Scholar

[7] R. Slamova, M. Trckova, H. Vondruskova, Z. Zraly, I. Pavlik, Applied Clay Science Clay minerals in animal nutrition, Appl. Clay Sci. 51 (2011) 395–398.

DOI: 10.1016/j.clay.2011.01.005

Google Scholar

[8] T. Johns, M. Duquette, Detoxification and mineral supplementation as functions of geophagy., Am J Clin Nutr. 53 (1991) 448–56.

DOI: 10.1093/ajcn/53.2.448

Google Scholar

[9] A.M. Panichev, S.A. Trepet, I.Y. Chekryzhov, O.A. Loktionova, V. V Krupskaya, Causes of Geophagy by Ungulate Animals in the Caucasus Mountains, Achiev. Life Sci. J. 8 (2014) 35-42.

DOI: 10.1016/j.als.2014.11.002

Google Scholar

[10] P. Abrahams, M. Follansbee, A. Hunt, B. Smith, J. Wragg, Iron nutrition and possible lead toxicity: An appraisal of geophagy undertaken by pregnant women of UK Asian communities, Appl. Geochemistry. 21 (2006) 98–108.

DOI: 10.1016/j.apgeochem.2005.09.015

Google Scholar

[11] J. Yanai, J. Noguchi, H. Yamada, S. Sugihara, M. Kilasara, T. Kosaki, Function of geophagy as supplementation of micronutrients in Tanzania, Soil Sci Plant Nutr. 5 (2009) 15–23.

DOI: 10.1111/j.1747-0765.2008.00346.x

Google Scholar

[12] S.S. Abe, T. Masunaga, S. Yamamoto, T. Honna, T. Wakatsuki, Comprehensive assessment of the clay mineralogical composition of lowland soils in West Africa, Soil Sci. Plant Nutr. 52 (2006) 479–488.

DOI: 10.1111/j.1747-0765.2006.00060.x

Google Scholar

[13] C. Habold, F. Reichardt, Y. Le Maho, F. Angel, N. Liewig, J. Lignot, Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption, Br J Nutr. 102 (2009) 49–57.

DOI: 10.1017/s0007114508190274

Google Scholar

[14] H. Szajewska, P. Dziechciarz, J. Mrukowicz, Meta-analysis: Smectite in the treatment of acute infectious diarrhoea in children, Aliment Pharmacol Ther. 23 (2006) 17–27.

DOI: 10.1111/j.1365-2036.2006.02760.x

Google Scholar

[15] M.O. Elom, M.N. Alo, U.I. Ugah, G.A. Ibiam, Intestinal helminthes associated with geophagy in pregnancy in Afikpo North Ebonyi State, World J. Med. Med. Sci. 1 (2013) 92–97.

Google Scholar

[16] A.I. Luoba, P.W. Geissler, B. Estambale, J.H. Ouma, P. Magnussen, D. Alusala, R. Ayah, D. Mwaniki, H. Friis, Geophagy among pregnant and lactating women in Bondo District, western Kenya, Trans. R. Soc. Trop. Med. Hyg. 98 (2004) 734–741.

DOI: 10.1016/j.trstmh.2004.01.009

Google Scholar

[17] J. Guffroy, Las tradiciones centro-andinas de rocas grabadas (Perú) Evoluciones y Continuidades., Rev. Antropol. Chil. 43 (2011) 73-88.

DOI: 10.4067/s0717-73562011000100005

Google Scholar

[18] D.L. Browman, Tierras comestibles de la Cuenca del Titicaca: Geofagia en la prehistoria boliviana, Estud. Atacameños. 28 (2004) 133–141.

DOI: 10.4067/s0718-10432004002800011

Google Scholar

[19] D.L. Browman, J.N. Gunderson, Altiplano comestible earths: Prehistoric and historic geophagy of highland Peru and Bolivia, Geoarchaeology. 8 (1993) 413–425.

DOI: 10.1002/gea.3340080506

Google Scholar

[20] D. Mwalongo, N.K. Mohammed, Determination of Essential and Toxic Elements in Clay Soil Commonly Consumed by Pregnant Women in Tanzania, Radiat. Phys. Chem. (2013) 1–9.

DOI: 10.1016/j.radphyschem.2013.06.002

Google Scholar

[21] S.E. Owumi, A.K. Oyelere, Determination of metal ion contents of two antiemetic clays use in Geophagy, Toxicol. Reports. 2 (2015) 928–932.

DOI: 10.1016/j.toxrep.2015.06.008

Google Scholar

[22] R. Kutalek, G. Wewalka, C. Gundacker, H. Auer, J. Wilson, D. Haluza, S. Huhulescu, S. Hillier, M. Sager, A. Prinz, Transactions of the Royal Society of Tropical Medicine and Hygiene Geophagy and potential health implications : geohelminths , microbes and heavy metals, Trans. R. Soc. Trop. Med. Hyg. 104 (2010) 787–795.

DOI: 10.1016/j.trstmh.2010.09.002

Google Scholar

[23] C. Gundacker, R. Kutalek, R. Glaunach, C. Deweis, M. Hengstschläger, A. Prinz, Geophagy during pregnancy : Is there a health risk for infants, Environ. Res. 156 (2017) 145–147.

DOI: 10.1016/j.envres.2017.03.028

Google Scholar

[24] R.J. Prince, A.I. Luoba, P. Adihiambo, J. Ng`uono, P.W. Geissler, Geophagy is common among Luo women in western Kenya, Trans. R. Soc. Trop. Med. Hyg. 93 (1999) 515–516.

DOI: 10.1016/s0035-9203(99)90355-3

Google Scholar

[25] W. Geissler, D. Mwaniki, F. Thiong, H. Friis, Geophagy as a risk factor for geohelminth Kenyan primary schoolchildren infections : a longitudinal study of, Trans. R. Soc. Trop. Med. Hyg. 92 (1998) 7–11.

DOI: 10.1016/s0035-9203(98)90934-8

Google Scholar

[26] R.P. Fragoso, M.B.M. Monteiro, E.M. Lemos, F.E.L. Pereira, Anti-Toxocara antibodies detected in children attending elementary school in Vitoria, State of Espírito Santo, Brazil: prevalence and associated factors, Rev. Soc. Bras. Med. Trop. 44 (2011) 461–466.

DOI: 10.1590/s0037-86822011000400012

Google Scholar

[27] S. Tong, Y.E. von Schirnding, T. Prapamontol, Environmental lead exposure: a public health problem of global dimensions., Bull. World Health Organ. 78 (2000) 1068–1077.

Google Scholar

[28] M.J. Wilson, L. Wilson, I. Matey, The influence of individual clay minerals on formation damage of reservoir sandstones : a critical review with some new insights, Clay Miner. 49 (2014) 147–164.

DOI: 10.1180/claymin.2014.049.2.02

Google Scholar

[29] W.J. Mchardy, M.J. Wilson, J.M. Tait, Electron microscope and X-ray diffraction studies of filamen- tous illitic clay from sandstones of the Magnus Field, Clay Miner. 17 (1982) 23–39.

DOI: 10.1180/claymin.1982.017.1.04

Google Scholar

[30] G.P. Souza, S.J.G. Sousa, L.A.H. Terrones, J.N.F. Holanda, Mineralogical analysis of Brazilian ceramic sedimentary clays used in red ceramic, Cerâmica. 51 (2005) 381–386.

DOI: 10.1590/s0366-69132005000400012

Google Scholar

[31] H.H. Murray, S.C. Lyons, Further correlations of kaolinite crystallinity with chemical and physical properties, Clays Clay Miner. 8 (1959) 11–17.

DOI: 10.1346/ccmn.1959.0080104

Google Scholar

[32] Z. Yi, L. Huang, F. Liu, M. Kuang, Q. Ling, J. Zhu, Applied Clay Science Characteristics of clay minerals in soil particles of two Al fi sols in China, Appl. Clay Sci. 120 (2016) 51–60.

DOI: 10.1016/j.clay.2015.11.018

Google Scholar

[33] M.S. Wong, D.A.P. Bundyz, M.H.N. Golden, Quantitative assessment of geophagous behaviour as a potential source of Exposure to Geohelminth infection, Trans. R. Soc. Trop. Med. Hyg. 82 (1988) 621–625.

DOI: 10.1016/0035-9203(88)90532-9

Google Scholar

[34] J. Perin, A. Thomas, L. Oldja, S. Ahmed, T. Parvin, S.I. Bhuyian, B. Sarker, S.K. Biswas, A.S.G. Faruque, R.B. Sack, C.M. George, Geophagy Is Associated with Growth Faltering in Children in, J. Pediatr. (2016).

DOI: 10.1016/j.jpeds.2016.06.077

Google Scholar

[35] K. Kawai, E. Saathoff, G. Antelman, G. Msamanga, W. Fawzi, Geophagy (soil-eating) in relation to anemia and helminth infection among HIV infected pregnant women in Tanzania, Am J Trop Med Hyg. 80 (2009) 36–43.

DOI: 10.4269/ajtmh.2009.80.36

Google Scholar

[36] U. Mashao, G.-I. Ekosse, J. Odiyo, N. Bukalo, Geophagic practice in Mashau Village, Limpopo Province, South Africa, Heliyon. 7 (2021) e06497.

DOI: 10.1016/j.heliyon.2021.e06497

Google Scholar

[37] S. He, Q. Lu, W. Li, Z. Ren, Z. Zhou, X. Feng, Y. Zhang, Y. Li, Factors controlling cadmium and lead activities in different parent material-derived soils from the Pearl River Basin, Chemosphere. 182 (2017) 509–516.

DOI: 10.1016/j.chemosphere.2017.05.007

Google Scholar