[1]
J. Halsted, Geophagia in man: its nature and nutritional effects., J. Nutr. 21 (1968) 1384–93.
Google Scholar
[2]
P.W. Abrahams, J.A. Parsons, Geophagy in the tropics, A Lit. Rev. 162 (1996) 63–72.
Google Scholar
[3]
B. Anell, S. Lagercrantz, Geophagical customs, first, (1958).
Google Scholar
[4]
C. Frazzoli, G. Bertrand, A. Mantovani, O. Ebere, Science of the Total Environment Health risks from lost awareness of cultural behaviours rooted in traditional medicine : An insight in geophagy and mineral intake, Sci. Total Environ. 566–567 (2016) 1465–1471.
DOI: 10.1016/j.scitotenv.2016.06.028
Google Scholar
[5]
M. Nchito, P.W. Geissler, L. Mubila, H. Friis, A. Olsen, Effects of iron and multimicronutrient supplementation on geophagy : a two-by-two factorial study among Zambian schoolchildren in Lusaka, Trans. R. Soc. Trop. Med. Hyg. 98 (2004) 218–227.
DOI: 10.1016/s0035-9203(03)00045-2
Google Scholar
[6]
R. Reid, Cultural and medical perspectives on geophagia., Med Anthr. 13 (1992) 337–51.
Google Scholar
[7]
R. Slamova, M. Trckova, H. Vondruskova, Z. Zraly, I. Pavlik, Applied Clay Science Clay minerals in animal nutrition, Appl. Clay Sci. 51 (2011) 395–398.
DOI: 10.1016/j.clay.2011.01.005
Google Scholar
[8]
T. Johns, M. Duquette, Detoxification and mineral supplementation as functions of geophagy., Am J Clin Nutr. 53 (1991) 448–56.
DOI: 10.1093/ajcn/53.2.448
Google Scholar
[9]
A.M. Panichev, S.A. Trepet, I.Y. Chekryzhov, O.A. Loktionova, V. V Krupskaya, Causes of Geophagy by Ungulate Animals in the Caucasus Mountains, Achiev. Life Sci. J. 8 (2014) 35-42.
DOI: 10.1016/j.als.2014.11.002
Google Scholar
[10]
P. Abrahams, M. Follansbee, A. Hunt, B. Smith, J. Wragg, Iron nutrition and possible lead toxicity: An appraisal of geophagy undertaken by pregnant women of UK Asian communities, Appl. Geochemistry. 21 (2006) 98–108.
DOI: 10.1016/j.apgeochem.2005.09.015
Google Scholar
[11]
J. Yanai, J. Noguchi, H. Yamada, S. Sugihara, M. Kilasara, T. Kosaki, Function of geophagy as supplementation of micronutrients in Tanzania, Soil Sci Plant Nutr. 5 (2009) 15–23.
DOI: 10.1111/j.1747-0765.2008.00346.x
Google Scholar
[12]
S.S. Abe, T. Masunaga, S. Yamamoto, T. Honna, T. Wakatsuki, Comprehensive assessment of the clay mineralogical composition of lowland soils in West Africa, Soil Sci. Plant Nutr. 52 (2006) 479–488.
DOI: 10.1111/j.1747-0765.2006.00060.x
Google Scholar
[13]
C. Habold, F. Reichardt, Y. Le Maho, F. Angel, N. Liewig, J. Lignot, Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption, Br J Nutr. 102 (2009) 49–57.
DOI: 10.1017/s0007114508190274
Google Scholar
[14]
H. Szajewska, P. Dziechciarz, J. Mrukowicz, Meta-analysis: Smectite in the treatment of acute infectious diarrhoea in children, Aliment Pharmacol Ther. 23 (2006) 17–27.
DOI: 10.1111/j.1365-2036.2006.02760.x
Google Scholar
[15]
M.O. Elom, M.N. Alo, U.I. Ugah, G.A. Ibiam, Intestinal helminthes associated with geophagy in pregnancy in Afikpo North Ebonyi State, World J. Med. Med. Sci. 1 (2013) 92–97.
Google Scholar
[16]
A.I. Luoba, P.W. Geissler, B. Estambale, J.H. Ouma, P. Magnussen, D. Alusala, R. Ayah, D. Mwaniki, H. Friis, Geophagy among pregnant and lactating women in Bondo District, western Kenya, Trans. R. Soc. Trop. Med. Hyg. 98 (2004) 734–741.
DOI: 10.1016/j.trstmh.2004.01.009
Google Scholar
[17]
J. Guffroy, Las tradiciones centro-andinas de rocas grabadas (Perú) Evoluciones y Continuidades., Rev. Antropol. Chil. 43 (2011) 73-88.
DOI: 10.4067/s0717-73562011000100005
Google Scholar
[18]
D.L. Browman, Tierras comestibles de la Cuenca del Titicaca: Geofagia en la prehistoria boliviana, Estud. Atacameños. 28 (2004) 133–141.
DOI: 10.4067/s0718-10432004002800011
Google Scholar
[19]
D.L. Browman, J.N. Gunderson, Altiplano comestible earths: Prehistoric and historic geophagy of highland Peru and Bolivia, Geoarchaeology. 8 (1993) 413–425.
DOI: 10.1002/gea.3340080506
Google Scholar
[20]
D. Mwalongo, N.K. Mohammed, Determination of Essential and Toxic Elements in Clay Soil Commonly Consumed by Pregnant Women in Tanzania, Radiat. Phys. Chem. (2013) 1–9.
DOI: 10.1016/j.radphyschem.2013.06.002
Google Scholar
[21]
S.E. Owumi, A.K. Oyelere, Determination of metal ion contents of two antiemetic clays use in Geophagy, Toxicol. Reports. 2 (2015) 928–932.
DOI: 10.1016/j.toxrep.2015.06.008
Google Scholar
[22]
R. Kutalek, G. Wewalka, C. Gundacker, H. Auer, J. Wilson, D. Haluza, S. Huhulescu, S. Hillier, M. Sager, A. Prinz, Transactions of the Royal Society of Tropical Medicine and Hygiene Geophagy and potential health implications : geohelminths , microbes and heavy metals, Trans. R. Soc. Trop. Med. Hyg. 104 (2010) 787–795.
DOI: 10.1016/j.trstmh.2010.09.002
Google Scholar
[23]
C. Gundacker, R. Kutalek, R. Glaunach, C. Deweis, M. Hengstschläger, A. Prinz, Geophagy during pregnancy : Is there a health risk for infants, Environ. Res. 156 (2017) 145–147.
DOI: 10.1016/j.envres.2017.03.028
Google Scholar
[24]
R.J. Prince, A.I. Luoba, P. Adihiambo, J. Ng`uono, P.W. Geissler, Geophagy is common among Luo women in western Kenya, Trans. R. Soc. Trop. Med. Hyg. 93 (1999) 515–516.
DOI: 10.1016/s0035-9203(99)90355-3
Google Scholar
[25]
W. Geissler, D. Mwaniki, F. Thiong, H. Friis, Geophagy as a risk factor for geohelminth Kenyan primary schoolchildren infections : a longitudinal study of, Trans. R. Soc. Trop. Med. Hyg. 92 (1998) 7–11.
DOI: 10.1016/s0035-9203(98)90934-8
Google Scholar
[26]
R.P. Fragoso, M.B.M. Monteiro, E.M. Lemos, F.E.L. Pereira, Anti-Toxocara antibodies detected in children attending elementary school in Vitoria, State of Espírito Santo, Brazil: prevalence and associated factors, Rev. Soc. Bras. Med. Trop. 44 (2011) 461–466.
DOI: 10.1590/s0037-86822011000400012
Google Scholar
[27]
S. Tong, Y.E. von Schirnding, T. Prapamontol, Environmental lead exposure: a public health problem of global dimensions., Bull. World Health Organ. 78 (2000) 1068–1077.
Google Scholar
[28]
M.J. Wilson, L. Wilson, I. Matey, The influence of individual clay minerals on formation damage of reservoir sandstones : a critical review with some new insights, Clay Miner. 49 (2014) 147–164.
DOI: 10.1180/claymin.2014.049.2.02
Google Scholar
[29]
W.J. Mchardy, M.J. Wilson, J.M. Tait, Electron microscope and X-ray diffraction studies of filamen- tous illitic clay from sandstones of the Magnus Field, Clay Miner. 17 (1982) 23–39.
DOI: 10.1180/claymin.1982.017.1.04
Google Scholar
[30]
G.P. Souza, S.J.G. Sousa, L.A.H. Terrones, J.N.F. Holanda, Mineralogical analysis of Brazilian ceramic sedimentary clays used in red ceramic, Cerâmica. 51 (2005) 381–386.
DOI: 10.1590/s0366-69132005000400012
Google Scholar
[31]
H.H. Murray, S.C. Lyons, Further correlations of kaolinite crystallinity with chemical and physical properties, Clays Clay Miner. 8 (1959) 11–17.
DOI: 10.1346/ccmn.1959.0080104
Google Scholar
[32]
Z. Yi, L. Huang, F. Liu, M. Kuang, Q. Ling, J. Zhu, Applied Clay Science Characteristics of clay minerals in soil particles of two Al fi sols in China, Appl. Clay Sci. 120 (2016) 51–60.
DOI: 10.1016/j.clay.2015.11.018
Google Scholar
[33]
M.S. Wong, D.A.P. Bundyz, M.H.N. Golden, Quantitative assessment of geophagous behaviour as a potential source of Exposure to Geohelminth infection, Trans. R. Soc. Trop. Med. Hyg. 82 (1988) 621–625.
DOI: 10.1016/0035-9203(88)90532-9
Google Scholar
[34]
J. Perin, A. Thomas, L. Oldja, S. Ahmed, T. Parvin, S.I. Bhuyian, B. Sarker, S.K. Biswas, A.S.G. Faruque, R.B. Sack, C.M. George, Geophagy Is Associated with Growth Faltering in Children in, J. Pediatr. (2016).
DOI: 10.1016/j.jpeds.2016.06.077
Google Scholar
[35]
K. Kawai, E. Saathoff, G. Antelman, G. Msamanga, W. Fawzi, Geophagy (soil-eating) in relation to anemia and helminth infection among HIV infected pregnant women in Tanzania, Am J Trop Med Hyg. 80 (2009) 36–43.
DOI: 10.4269/ajtmh.2009.80.36
Google Scholar
[36]
U. Mashao, G.-I. Ekosse, J. Odiyo, N. Bukalo, Geophagic practice in Mashau Village, Limpopo Province, South Africa, Heliyon. 7 (2021) e06497.
DOI: 10.1016/j.heliyon.2021.e06497
Google Scholar
[37]
S. He, Q. Lu, W. Li, Z. Ren, Z. Zhou, X. Feng, Y. Zhang, Y. Li, Factors controlling cadmium and lead activities in different parent material-derived soils from the Pearl River Basin, Chemosphere. 182 (2017) 509–516.
DOI: 10.1016/j.chemosphere.2017.05.007
Google Scholar