[1]
A.K. Koyande, K.W. Chew, K. Rambabu, Y. Tao, D.T. Chu, P.L. Show, Microalgae: A potential alternative to health supplementation for humans, Food Sci. Human Wellness 8 (1) (2019) 16–24.
DOI: 10.1016/j.fshw.2019.03.001
Google Scholar
[2]
C. Couteau, L. Coiffard, Microalgal application in cosmetics, in: I.A. Levine, J. Fleurence (Eds.), Microalgae in Health and Disease Prevention. Elsevier Inc., Cambridge, Massachusetts, 2018, pp.317-323.
DOI: 10.1016/b978-0-12-811405-6.00015-3
Google Scholar
[3]
J. Velazquez-lucio, R.M. Rodríguez-jasso, L.M. Colla, A. Sáenz-galindo, D.E. Cervantes-, C.N. Aguilar, Microalgal Biomass Pretreatment for Bioethanol Production : A Review, Biofuel Research Journal 17 (2018) 780–791.
DOI: 10.18331/brj2018.5.1.5
Google Scholar
[4]
Megawati, A. Damayanti, R.D.A. Putri, I.N. Pradnya, K. Hotimah, Y. Satriawan, The Drying Rate of Chlorella pyrenoidosa Using an Oven in Bioethanol Production, J. Adv. Res. Fluid Mech. Therm. Sci. 1 (1) (2021) 128–136.
DOI: 10.37934/arfmts.80.1.128136
Google Scholar
[5]
Ç. Yarkent, C. Gürlek, S.S. Oncel, Potential of microalgal compounds in trending natural cosmetics: A review, Sustain. Chem. Pharm. 17 (2020) 1-11.
DOI: 10.1016/j.scp.2020.100304
Google Scholar
[6]
Ariede, T.M. Candido, A.L.M. Jacome, M.V.R. Velasco, J.C.M. de Carvalho, A.R. Baby, Cosmetic attributes of algae - A review, Algal Res. 25 (2017) 483–487.
DOI: 10.1016/j.algal.2017.05.019
Google Scholar
[7]
S. Khanra, M. Mondal, G. Halder, O.N. Tiwari, K. Gayen, T.K. Bhowmick, Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review, Food Bioprod. Process. 110 (2018) 60–84.
DOI: 10.1016/j.fbp.2018.02.002
Google Scholar
[8]
Wang, H.M. David, C.C. Chen, P. Huynh, J.S. Chang, Exploring the potential of using algae in cosmetics, Bioresour. Technol. 184 (2015) 355–362.
DOI: 10.1016/j.biortech.2014.12.001
Google Scholar
[9]
S.E. Karatay, M. Erdoğan, S. Dönmez, G. Dönmez, Experimnetal Investigations on Bioethanol Production from Halophilic Microalgal Biomass, Ecological Eng. 95 (2016) 266-270.
DOI: 10.1016/j.ecoleng.2016.06.058
Google Scholar
[10]
Megawati, A. Damayanti, R.D.A. Putri, I.N. Pradnya, H.F. Yahya, N.K. Arnan, Drying Characteristics of Chlorella pyrenoidosa Using Oven and its Evaluation for Bio-Ethanol Production, Mater. Sci. Forum 1007 (2020) 1–5.
DOI: 10.4028/www.scientific.net/msf.1007.1
Google Scholar
[11]
A. Widjaja, Lipid Production from Microalgae as a Promising Candidate for Biodiesel Production, Makara J. Tech. 13 (2009) 47-51.
DOI: 10.7454/mst.v13i1.496
Google Scholar
[12]
N. Wayan, S. Agustini, N. Febrian, Hidrolisis Biomassa Mikroalga Porphyridium Creuntum, Jurnal Kimia dan Kemasan 41 (2019) 1-10.
DOI: 10.24817/jkk.v41i1.3962
Google Scholar
[13]
Padil, S. Syamsiah, M. Hidayat, R.S. Kasiamdari, Kinerja Enzim Ganda pada Pretreatment Mikroalga untuk Produksi Bioetanol, J. Bahan Alam Terbarukan 5 (2) (2017) 92–100.
DOI: 10.15294/jbat.v5i2.7564
Google Scholar
[14]
H. Shokrkar, S. Ebrahimi, M. Zamani, Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture, Fuel 200 (2017) 380–386.
DOI: 10.1016/j.fuel.2017.03.090
Google Scholar
[15]
Megawati, A. Damayanti, R.D.A. Putri, P.N. Sari, D. Fidyani, Kinetics study of enzymatic hydrolysis of Tetraselmis chuii using Valjamae model, IOP Conf. Ser.: Mater. Sci. Eng. 1053 012044 (2021) 1-11.
DOI: 10.1088/1757-899x/1053/1/012044
Google Scholar
[16]
R. Aguilar, J.A. Ramirez, G. Garrote, M. Vazques, Kinetic Study of the Acid Hydrolysis of sugar Cane Bagase, J. Food Eng. 4 (55) (2002) 4775-4800.
Google Scholar
[17]
R. Harun, M.K. Danquah, G.M. Forde, Microalgal biomass as a fermentation feedstock for bioethanol production, J. Chem. Technol. Biotechnol. 85 (2) (2009) 199–203.
DOI: 10.1002/jctb.2287
Google Scholar
[18]
C.E.D.F Silva and A. Bertucco, Bioethanol From Microalgae and Cynobacteria : A Review and Technological Outlook, Process Biochem, 51 (11) (2016) 1833-1842.
DOI: 10.1016/j.procbio.2016.02.016
Google Scholar
[19]
Megawati, W.B. Sediawan, H. Sulistyo, M. Hidayat, Sulfuric acid hydrolysis of various lignocellulosic materials and its mixture in ethanol production, Biofuels, 6 (5-6) (2015) 331-340.
DOI: 10.1080/17597269.2015.1110774
Google Scholar
[20]
K.L. Yu, W-H. Chen, H-K. Sheen, J-S. Chang, C-S. Lin, H.C. Ong, C. Hwai, P.L. Show, E-P. Ng, T.C. Ling, Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assited heating and acid hydrolysis pretreatment, Renew. Ener. 156 (2020) 349-360.
DOI: 10.1016/j.renene.2020.04.064
Google Scholar
[21]
C.C. Fu, T.C. Hung, J.Y. Chen, C.H. Su, W.T. Wu, Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction, Bioresour. Technol. 101 (22) (2010) 8750–8754.
DOI: 10.1016/j.biortech.2010.06.100
Google Scholar
[22]
M. He, Y. Sun, D. Zou, H. Yuan, B. Zhu, X. Li, Y. Pang, Influence of temperature on hydrolysis acidification of food waste, Procedia Environ. Sci. 16 (2012) 85-94.
DOI: 10.1016/j.proenv.2012.10.012
Google Scholar
[23]
C.Y. Chen, Q.Z. Xin, W.Y. Hong, H.H. Shih, L.C. Chieh, J.L. Duu, Microalgae-based carbohydrates for biofuel production, Biochem. Eng. J. 78 (2013) 1–10.
Google Scholar
[24]
S.A. Jambo, R. Abdulla, S.H.M. Azhar, H. Marbawi, J.A. Gansau, P. Ravindra, A review on third generation bioethanol feedstock, Renew. Sustain. Energy Rev. 65 (2016) 756–769.
DOI: 10.1016/j.rser.2016.07.064
Google Scholar
[25]
N. Duongbia, S. Chaiwongsar, C. Chaichana, Acidic hydrolysis performance and hydrolyzed lipid characterizations of wet Spirulina plantesis, Biomass Conv. Bioref. 9 (2019) 305–319.
DOI: 10.1007/s13399-018-0350-6
Google Scholar
[26]
M. Matsumo, H. Yokouchi, N. Suzuki, H. ohata, T. Matsunaga, Saccharification of marine microalgae using marine bacteria for ethanol production, Appl. Biotechnol.- Part A Enzym. Eng. Bioethanol. 105 (2003) 247-254.
DOI: 10.1385/abab:105:1-3:247
Google Scholar
[27]
Q. Xiang, Y. Y. Lee, P.O. Petterson, R. W. Torget, Heterogenous aspect of acid hydrolysis of α-cellulose, Appl. Biochem. Biotechnol.-Part A Enzym. eng. Biotechnol. 107 (2003) 505-514.
Google Scholar
[28]
G. Miranda, A. Amri, S.P. Utami, Hidrolisis Mikroalga Tetraselmis Chui dengan Variasi Konsentrasi Asam Sulfat dan Temperatur, IEEJ Transactions on Power and Energy 139 (12) (2014) 1-5.
Google Scholar
[29]
I. S. Tan, M. K. Lam, H.C. Y. Foo, S. Lim, K. T. Lee, Aadvances of microalgae biomass for the third generation of bioethanol production, Chinese J. Chem. Eng. 28 (2020) 502-517.
DOI: 10.1016/j.cjche.2019.05.012
Google Scholar