Hydrolysis of S. platensis Using Sulfuric Acid for Ethanol Production

Article Preview

Abstract:

S. platensis is a microalga that contains carbohydrate composition of 30.21% which makes it potential to be used as raw material for ethanol production. Hydrolysis of S. platensis is the first step for converting its carbohydrates into monosaccharides. The second step is fermentation of monosaccharides into ethanol. This research aims to study the effect of temperature and microalgae concentration on the hydrolysis of S. platensis using sulfuric acid as catalyst. This research was conducted using 300 mL sulfuric acid of 2 mol/L, hydrolysis temperatures of 70, 80 and 90 °C, and microalgae concentrations of 20, 26.7, and 33.3 g/L. The effect of temperature is significant in the hydrolysis of S. platensis using sulfuric acid. At microalgae concentration of 20 g/L and hydrolysis time of 35 minutes, the higher the temperatures (70, 80, and 90 °C), the more the glucose yields would be (8.9, 13.5, and 22.9%). This temperature effect got stronger when the hydrolysis was running for 15 minutes. Every time the hydrolysis temperature increased by 10 °C, the glucose yield increased by 13.0% at microalgae concentration of 33.3 g/L. At temperature of 90 °C and time of 35 minutes, the higher the microalgae concentrations (20, 26.7, and 33.3 g/L), the higher the glucose yields would be (25.5, 27.7, and 28.2%). The highest glucose concentration obtained was 2.82 g/L at microalgae concentration of 33.3 g/L, temperature of 90 °C, and time of 35 minutes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1048)

Pages:

451-458

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Koyande, K.W. Chew, K. Rambabu, Y. Tao, D.T. Chu, P.L. Show, Microalgae: A potential alternative to health supplementation for humans, Food Sci. Human Wellness 8 (1) (2019) 16–24.

DOI: 10.1016/j.fshw.2019.03.001

Google Scholar

[2] C. Couteau, L. Coiffard, Microalgal application in cosmetics, in: I.A. Levine, J. Fleurence (Eds.), Microalgae in Health and Disease Prevention. Elsevier Inc., Cambridge, Massachusetts, 2018, pp.317-323.

DOI: 10.1016/b978-0-12-811405-6.00015-3

Google Scholar

[3] J. Velazquez-lucio, R.M. Rodríguez-jasso, L.M. Colla, A. Sáenz-galindo, D.E. Cervantes-, C.N. Aguilar, Microalgal Biomass Pretreatment for Bioethanol Production : A Review, Biofuel Research Journal 17 (2018) 780–791.

DOI: 10.18331/brj2018.5.1.5

Google Scholar

[4] Megawati, A. Damayanti, R.D.A. Putri, I.N. Pradnya, K. Hotimah, Y. Satriawan, The Drying Rate of Chlorella pyrenoidosa Using an Oven in Bioethanol Production, J. Adv. Res. Fluid Mech. Therm. Sci. 1 (1) (2021) 128–136.

DOI: 10.37934/arfmts.80.1.128136

Google Scholar

[5] Ç. Yarkent, C. Gürlek, S.S. Oncel, Potential of microalgal compounds in trending natural cosmetics: A review, Sustain. Chem. Pharm. 17 (2020) 1-11.

DOI: 10.1016/j.scp.2020.100304

Google Scholar

[6] Ariede, T.M. Candido, A.L.M. Jacome, M.V.R. Velasco, J.C.M. de Carvalho, A.R. Baby, Cosmetic attributes of algae - A review, Algal Res. 25 (2017) 483–487.

DOI: 10.1016/j.algal.2017.05.019

Google Scholar

[7] S. Khanra, M. Mondal, G. Halder, O.N. Tiwari, K. Gayen, T.K. Bhowmick, Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review, Food Bioprod. Process. 110 (2018) 60–84.

DOI: 10.1016/j.fbp.2018.02.002

Google Scholar

[8] Wang, H.M. David, C.C. Chen, P. Huynh, J.S. Chang, Exploring the potential of using algae in cosmetics, Bioresour. Technol. 184 (2015) 355–362.

DOI: 10.1016/j.biortech.2014.12.001

Google Scholar

[9] S.E. Karatay, M. Erdoğan, S. Dönmez, G. Dönmez, Experimnetal Investigations on Bioethanol Production from Halophilic Microalgal Biomass, Ecological Eng. 95 (2016) 266-270.

DOI: 10.1016/j.ecoleng.2016.06.058

Google Scholar

[10] Megawati, A. Damayanti, R.D.A. Putri, I.N. Pradnya, H.F. Yahya, N.K. Arnan, Drying Characteristics of Chlorella pyrenoidosa Using Oven and its Evaluation for Bio-Ethanol Production, Mater. Sci. Forum 1007 (2020) 1–5.

DOI: 10.4028/www.scientific.net/msf.1007.1

Google Scholar

[11] A. Widjaja, Lipid Production from Microalgae as a Promising Candidate for Biodiesel Production, Makara J. Tech. 13 (2009) 47-51.

DOI: 10.7454/mst.v13i1.496

Google Scholar

[12] N. Wayan, S. Agustini, N. Febrian, Hidrolisis Biomassa Mikroalga Porphyridium Creuntum, Jurnal Kimia dan Kemasan 41 (2019) 1-10.

DOI: 10.24817/jkk.v41i1.3962

Google Scholar

[13] Padil, S. Syamsiah, M. Hidayat, R.S. Kasiamdari, Kinerja Enzim Ganda pada Pretreatment Mikroalga untuk Produksi Bioetanol, J. Bahan Alam Terbarukan 5 (2) (2017) 92–100.

DOI: 10.15294/jbat.v5i2.7564

Google Scholar

[14] H. Shokrkar, S. Ebrahimi, M. Zamani, Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture, Fuel 200 (2017) 380–386.

DOI: 10.1016/j.fuel.2017.03.090

Google Scholar

[15] Megawati, A. Damayanti, R.D.A. Putri, P.N. Sari, D. Fidyani, Kinetics study of enzymatic hydrolysis of Tetraselmis chuii using Valjamae model, IOP Conf. Ser.: Mater. Sci. Eng. 1053 012044 (2021) 1-11.

DOI: 10.1088/1757-899x/1053/1/012044

Google Scholar

[16] R. Aguilar, J.A. Ramirez, G. Garrote, M. Vazques, Kinetic Study of the Acid Hydrolysis of sugar Cane Bagase, J. Food Eng. 4 (55) (2002) 4775-4800.

Google Scholar

[17] R. Harun, M.K. Danquah, G.M. Forde, Microalgal biomass as a fermentation feedstock for bioethanol production, J. Chem. Technol. Biotechnol. 85 (2) (2009) 199–203.

DOI: 10.1002/jctb.2287

Google Scholar

[18] C.E.D.F Silva and A. Bertucco, Bioethanol From Microalgae and Cynobacteria : A Review and Technological Outlook, Process Biochem, 51 (11) (2016) 1833-1842.

DOI: 10.1016/j.procbio.2016.02.016

Google Scholar

[19] Megawati, W.B. Sediawan, H. Sulistyo, M. Hidayat, Sulfuric acid hydrolysis of various lignocellulosic materials and its mixture in ethanol production, Biofuels, 6 (5-6) (2015) 331-340.

DOI: 10.1080/17597269.2015.1110774

Google Scholar

[20] K.L. Yu, W-H. Chen, H-K. Sheen, J-S. Chang, C-S. Lin, H.C. Ong, C. Hwai, P.L. Show, E-P. Ng, T.C. Ling, Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assited heating and acid hydrolysis pretreatment, Renew. Ener. 156 (2020) 349-360.

DOI: 10.1016/j.renene.2020.04.064

Google Scholar

[21] C.C. Fu, T.C. Hung, J.Y. Chen, C.H. Su, W.T. Wu, Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction, Bioresour. Technol. 101 (22) (2010) 8750–8754.

DOI: 10.1016/j.biortech.2010.06.100

Google Scholar

[22] M. He, Y. Sun, D. Zou, H. Yuan, B. Zhu, X. Li, Y. Pang, Influence of temperature on hydrolysis acidification of food waste, Procedia Environ. Sci. 16 (2012) 85-94.

DOI: 10.1016/j.proenv.2012.10.012

Google Scholar

[23] C.Y. Chen, Q.Z. Xin, W.Y. Hong, H.H. Shih, L.C. Chieh, J.L. Duu, Microalgae-based carbohydrates for biofuel production, Biochem. Eng. J. 78 (2013) 1–10.

Google Scholar

[24] S.A. Jambo, R. Abdulla, S.H.M. Azhar, H. Marbawi, J.A. Gansau, P. Ravindra, A review on third generation bioethanol feedstock, Renew. Sustain. Energy Rev. 65 (2016) 756–769.

DOI: 10.1016/j.rser.2016.07.064

Google Scholar

[25] N. Duongbia, S. Chaiwongsar, C. Chaichana, Acidic hydrolysis performance and hydrolyzed lipid characterizations of wet Spirulina plantesis, Biomass Conv. Bioref. 9 (2019) 305–319.

DOI: 10.1007/s13399-018-0350-6

Google Scholar

[26] M. Matsumo, H. Yokouchi, N. Suzuki, H. ohata, T. Matsunaga, Saccharification of marine microalgae using marine bacteria for ethanol production, Appl. Biotechnol.- Part A Enzym. Eng. Bioethanol. 105 (2003) 247-254.

DOI: 10.1385/abab:105:1-3:247

Google Scholar

[27] Q. Xiang, Y. Y. Lee, P.O. Petterson, R. W. Torget, Heterogenous aspect of acid hydrolysis of α-cellulose, Appl. Biochem. Biotechnol.-Part A Enzym. eng. Biotechnol. 107 (2003) 505-514.

Google Scholar

[28] G. Miranda, A. Amri, S.P. Utami, Hidrolisis Mikroalga Tetraselmis Chui dengan Variasi Konsentrasi Asam Sulfat dan Temperatur, IEEJ Transactions on Power and Energy 139 (12) (2014) 1-5.

Google Scholar

[29] I. S. Tan, M. K. Lam, H.C. Y. Foo, S. Lim, K. T. Lee, Aadvances of microalgae biomass for the third generation of bioethanol production, Chinese J. Chem. Eng. 28 (2020) 502-517.

DOI: 10.1016/j.cjche.2019.05.012

Google Scholar