[1]
V. Shivakumar, Batch and fixed-bed column studies for bisorption of zinc ions onto pongamia oil cake (pongamiapinnata) from biodiesel oil extraction, J.Environ. Manage. 164 (2015) 161-170.
DOI: 10.1016/j.jenvman.2015.08.034
Google Scholar
[2]
A. Mishra, Brahma, D. Tripathi, A.K. Rai, Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrillaverticillata dried biomass, Ecotox. Environ. Safe. 132 (2016) 420-428.
DOI: 10.1016/j.ecoenv.2016.06.026
Google Scholar
[3]
A.P. Lim, A.Z. Aris, Continuous fixed-bed column study and adsorption modeling: Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons, Biochem. Eng. J. 87 (2014) 50-61.
DOI: 10.1016/j.bej.2014.03.019
Google Scholar
[4]
M.F. Ahmad, S. Haydar, Evaluation of a newly developed biosorbents using packed bed column for possible application in the treatment of industrial effluents for removal of cadmium ions, J.Taiwan. Inst.Chem.Eng. 000 (2016) 1-10.
DOI: 10.1016/j.jtice.2015.12.032
Google Scholar
[5]
S.A. Ahmed, Batch and fixed-bed column techniques for removal of copper and iron using carbohydrate natural polymer modified complexing agents, Carbohyd. Polym. 83 (2011) 1470-1478.
DOI: 10.1016/j.carbpol.2010.09.051
Google Scholar
[6]
M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem. 4 (2011) 361-377.
Google Scholar
[7]
X. Lang, A.K. Dalai, N. Bakhashi, M. Reaney, Hertz P. Preparation and characterization of biodiesels from various bio-oils. Bioresour Technol. 80 (2001) 53–62.
Google Scholar
[8]
D.P. Patil, S. Deng, Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88 (2009) 1302-1306.
DOI: 10.1016/j.fuel.2009.01.016
Google Scholar
[9]
L. Meher, M. Kulkarni, A. Dalai, S. Naik, Transesterification of karanja (Pongamiapinnata) oil by solid catalysts. Eur J of Lipid Sci Technol. 108 (2006) 389–97.
DOI: 10.1002/ejlt.200500307
Google Scholar
[10]
M.S. Kumar, A. Ramesh, B. Nagalingam, An experimental comparison of methods to use methanol and jatropha oil in a compression ignition engine. Biomass Bioenerg 25 (2003)309-18.
DOI: 10.1016/s0961-9534(03)00018-7
Google Scholar
[11]
M. Ahmad, D. H. Moon, M. Vithanage, A. Koutsospyros, S. S. Lee, J. E. Yang, S. E. Lee, C. Jeon, Y. S. Ok, Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water, J. Chem. Technol. Biotechnol. 89 (2014) 150–157.
DOI: 10.1002/jctb.4157
Google Scholar
[12]
B. B. Uzun, V. E. Apaydin, F. Ates, N. Ozbay, A. E. Pütün, Synthetic fuel production from tea waste: characterization of bio-oil and bio-char. Fuel 89 (2010) 176–184.
DOI: 10.1016/j.fuel.2009.08.040
Google Scholar
[13]
H. Jiang, Y. Yang, Z. Lin, B. Zhao, J. Wang, J. Xie, & A. Zhang, Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion. Sci. Total Environ. 744 (2020) 140653.
DOI: 10.1016/j.scitotenv.2020.140653
Google Scholar
[14]
S. Gupta., S. Sireesha, I. Sreedhar, C.M. Patel, K.L. Anitha, Latest trends in heavy metal removal from wastewater by biochar based sorbents, J. Water Process Engineering 38 (2020) 101561.
DOI: 10.1016/j.jwpe.2020.101561
Google Scholar
[15]
A. Agarwal, U. Upadhyay, I. Sreedhar, S.A. Singh, C.M. Patel, A review on valorization of biomass in heavy metal removal from wastewater, J. Water Process Engineering 38 (2020) 101602.
DOI: 10.1016/j.jwpe.2020.101602
Google Scholar