Effect of Al-Doped on the Electrical Properties of Nb2O5 Film Prepared by DC. Plasma Sputtering Technique

Article Preview

Abstract:

Thin films of Niobium oxide (Nb2O5) co-doped with (0.5, 1, and 1.5) %wt. percentages of Aluminum (Al) were prepared on glass substrates by DC. Sputtering plasma technique. The effects of Al concentration on structural, surface morphology, optical and electrical properties of transparent were investigated. Polycrystalline structures without any second phases were observed with preferential orientations along the (001), (100), (101), (002), and (111) planes. The crystalline size as determined from the (001) peaks lay in the range (20-50) two theta and all films of Nb2O5: Al films have pseudohexagonal phase. It was observed that Al doping reduced the crystal size but at the samples 0.5%Al the crystalline size increased slightly. Also, it's observing from SEM images an increase in particle size after Al-doped. The minimum resistivity was found to be 4.79 x104 (Ω.cm) for the Nb2O5 doped with 1.5%Al concentration and maximum resistivity was found to be (4.86 x104 (Ω.cm) for the pure Nb2O5. The doping to the optimum level of 1.5% Al concentration increases the electrical conductivity of Nb2O5. The mobility decreased but the sample 1.5%Al concentration increases and the carrier concentration increased with increasing the doping with Al but the sample 1.5%Al concentration decreases. The analysis of Hall coefficient showed the Nb2O5: Al films were n-type.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1050)

Pages:

21-33

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Baisnab, D. K., Mukherjee, S., & Das, S. (2021). A short review on inorganic thin films from device perspective. Chemical Solution Synthesis for Materials Design and Thin Film Device Applications, 231-275.

DOI: 10.1016/b978-0-12-819718-9.00007-8

Google Scholar

[2] Nico, C., Monteiro, T., & Graça, M. P. (2016). Niobium oxides and niobates physical properties: Review and prospects. Progress in Materials Science, 80, 1-37.

DOI: 10.1016/j.pmatsci.2016.02.001

Google Scholar

[3] Kumar, A., Malik, G., Adalati, R., Chawla, V., Pandey, M. K., & Chandra, R. Tuning the wettability of highly transparent Nb2O5 nano-sliced coatings to enhance anti-corrosion property. Materials Science in Semiconductor Processing. 123(2021)105513.

DOI: 10.1016/j.mssp.2020.105513

Google Scholar

[4] Kozen, A. C., Robinson, Z. R., Glaser, E. R., Twigg, M., Larrabee, T. J., Cho, H., & Ruppalt, L. B. (2020). In Situ Hydrogen Plasma Exposure for Varying the Stoichiometry of Atomic Layer Deposited Niobium Oxide Films for Use in Neuromorphic Computing Applications. ACS applied materials & interfaces, 12(14), 16639-16647.

DOI: 10.1021/acsami.0c01279

Google Scholar

[5] Junghähnel, M., Fahlteich, J., & Garner, S. (2017). Thin-film deposition on flexible glass by plasma processes. Flexible Glass: Enabling Thin, Lightweight, and Flexible Electronics, 129-180.

DOI: 10.1002/9781118946404.ch5

Google Scholar

[6] Ö.D. Coşkun, S. Demirel, G. Atak, The effects of heat treatment on optical, structural, electrochromic, and bonding properties of Nb2O5 thin films, J. Alloys Compd. 648(2015) 994–1004.

DOI: 10.1016/j.jallcom.2015.07.053

Google Scholar

[7] Piegari, A., & Flory, F. (Eds.). (2018). Optical thin films and coatings: From materials to applications. Woodhead Publishing.

Google Scholar

[8] Abood, M. K., Wahid, M. H. A., Saimon, J. A., & Salim, E. T. (2018). Physical Properties of Nb2O5 Thin Films Prepared at 12M Ammonium Concentration. International Journal of Nanoelectronics and Materials. 11, 237-244.

Google Scholar

[9] Al-Baradi, A. M., El-Nahass, M. M., Hassanien, A. M., Atta, A. A., Alqahtani, M. S., & Aldawsari, A. O. Influence of RF sputtering power on structural and optical properties of Nb2O5 thin films. Optik. 168 (2018) 853-863.

DOI: 10.1016/j.ijleo.2018.05.020

Google Scholar

[10] Nunes, B. N., Faustino, L. A., Muller, A. V., Polo, A. S., & Patrocinio, A. O. T. Nb2O5 dye-sensitized solar cells. Nanomaterials for Solar Cell Applications. (2019) 287-322.

DOI: 10.1016/b978-0-12-813337-8.00008-4

Google Scholar

[11] Akkurt, N., Pat, S., Mohammadigharehbagh, R., Olkun, A., & Korkmaz, Ş. Electrochromic Properties of Graphene Doped Nb2O5 Thin Film. ECS Journal of Solid State Science and Technology. 9.12(2020) 125004.

DOI: 10.1149/2162-8777/abd079

Google Scholar

[12] Mahdi, R. O., Fakhri, M. A., & Salim, E. T. (2020). Physical Investigations of Niobium Oxide Nanorod Imploring Laser Radiation. In Materials Science Forum (Vol. 1002, pp.211-220). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/msf.1002.211

Google Scholar

[13] Jedy, H. M., Anaee, R. A., & Abdulkarim, A. A. Characterization of Nb2O5-Ni Coating Prepared by DC Sputtering. Engineering and Technology Journal. 39.4A (2021) 565-572.

DOI: 10.30684/etj.v39i4a.1902

Google Scholar

[14] R. Abdul Rani, A.S. Zoolfakar, A.P. O'Mullane, M.W. Austin, K. Kalantar-Zadeh, Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods, and applications, J. Mater. Chem. A 2(2014) 15683–15703.

DOI: 10.1039/c4ta02561j

Google Scholar

[15] Salim, E. T., Ismail, R. A., & Halbos, H. T. Deposition geometry effect on structural, morphological and optical properties of Nb 2 O 5 nanostructure prepared by hydrothermal technique. Applied Physics A, 126.11(2020) 1-9.

DOI: 10.1007/s00339-020-03955-y

Google Scholar

[16] A.J. Haider, A.A. Najim, M.A.H. Muhi, TiO2/Ni composite as antireflection coating for a solar cell application, Opt. Commun. 370(2016) 263–266.

DOI: 10.1016/j.optcom.2016.03.034

Google Scholar

[17] H. Luo, W. Song, P.G. Hertz, K. Hanson, R. Ghosh, S. Rangan, M.K. Brennaman, J.J. Concepcion, R.A. Binstead, R.A. Bartynski, R. Lopez, T.J. Meyer, A sensitized Nb2O5 photoanode for hydrogen production in a dye-sensitized photoelectrosynthesis cell, Chem. Mater. 25(2012) 122–131.

DOI: 10.1021/cm3027972

Google Scholar

[18] Nath, S. K. (2021). Filamentary Threshold Switching in Niobium Oxides.

Google Scholar

[19] Islam, K., Sultana, R., Rakshit, A., Goutam, U. K., & Chakraborty, S. X-ray reflectivity and X-ray photoelectron spectroscopy studies on reactively sputtered $$\hbox {Nb} _ {2}\hbox {O} _ {5} $$ Nb2O5-based thin-film devices. SN Applied Sciences. 2.4(2020)1-7.

DOI: 10.1007/s42452-020-2558-x

Google Scholar

[20] Salim, E. T., Saimon, J. A., Abood, M. K., & Fakhri, M. A. Electrical conductivity inversion for Nb2O5 nanostructure thin films at different temperatures. Materials Research Express, 6.12(2020) 126459.

DOI: 10.1088/2053-1591/ab771c

Google Scholar

[21] Raknual, D., Suttiyarak, P., Tubtimtae, A., & Vailikhit, V. Effect of indium doping in Nb2O5 thin films for electron transport layers: Investigation of structural, optical, and electrical properties. Materials Letters. 259(2020)126828.

DOI: 10.1016/j.matlet.2019.126828

Google Scholar

[22] E. Çetinӧrgü-Goldenberg, J.-E. Kleberg-Sapieha, An effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films, Appl. Opt. 51(2012) 6498–6507.

DOI: 10.1364/ao.51.006498

Google Scholar

[23] C.-C. Lee, C.-L. Tien, J.-C. Hsu, Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering, Appl. Opt. 41(2002) 2043–(2047).

DOI: 10.1364/ao.41.002043

Google Scholar

[24] Emeka, N. C., Imoisili, P. E., & Jen, T. C. Preparation and Characterization of NbxOy Thin Films: A Review. Coatings, 10.12(2020) 1246.

DOI: 10.3390/coatings10121246

Google Scholar

[25] K. Lazarova, B. Georgieva, M. Spasova, T. Babeva, 2014. Preparation and characterization of mesoporous Nb2O5 films for sensing applications, J. Phys.: Conf. Ser. 558(2017) 7 pages.

DOI: 10.1088/1742-6596/558/1/012042

Google Scholar

[26] A. Ahmed, P. Tripathi, M. Naseem, and T. Ali, Microstructural, Optical, and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles, IOP Conf. Ser.: Mater. Sci. Eng. 225(2017) 012173.

DOI: 10.1088/1757-899x/225/1/012173

Google Scholar

[27] T. Blanquart, K. Kukli, J. Niinisto, V. Longo, Optical and Dielectric Characterization of Atomic Layer Deposited Nb2O5 Thin Films, ECS Solid-State Letters. 1(2012) N1-N3.

DOI: 10.1149/2.002201ssl

Google Scholar

[28] Sahoo, S. (2021). Conduction and switching behavior of e-beam deposited polycrystalline Nb2O5 based nano-ionic memristor for non-volatile memory applications. Journal of Alloys and Compounds, 866, 158394.

DOI: 10.1016/j.jallcom.2020.158394

Google Scholar

[29] Sathasivam, S., Williamson, B. A., Althabaiti, S. A., Obaid, A. Y., Basahel, S. N., Mokhtar, M., .. & Parkin, I. P. (2017). Chemical vapor deposition synthesis and optical properties of Nb2O5 thin films with hybrid functional theoretical insight into the band structure and band gaps. ACS applied materials & interfaces, 9(21), 18031-18038.

DOI: 10.1021/acsami.7b00907

Google Scholar

[30] Halboos, H. T., & Salim, E. T. (2018, December). Silver doped niobium pentoxide nanostructured thin film, optical structural and morphological properties. In IOP Conference Series: Materials Science and Engineering (Vol. 454, No. 1, p.012174). IOP Publishing.

DOI: 10.1088/1757-899x/454/1/012174

Google Scholar

[31] Usha, N., Sivakumar, R., Sanjeeviraja, C., & Arivanandhan, M. (2015). Niobium pentoxide (Nb2O5) thin films: rf Power and substrate temperature induced changes in physical properties. Optik-International Journal for Light and Electron Optics, 126(19), 1945-1950.

DOI: 10.1016/j.ijleo.2015.05.036

Google Scholar

[32] S. Li, Q. Xu, E. Uchaker, X. Cao, G. Cao, Comparison of amorphous, pseudohexagonal, and orthorhombic Nb2O5 for high-rate lithium-ion insertion, CrystEngComm. 18(2016) 2532–2540.

DOI: 10.1039/c5ce02069g

Google Scholar

[33] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, publish in Prentice-Hall, Upper Saddle River, New Jersey. (2001) 3rd Ed.

Google Scholar

[34] A. Ahmed, P. M. Tripathi,, N. Siddique, and T. Ali, Microstructural, Optical, and Dielectric Properties of Al Incorporated SnO2 Nanoparticle, IOP Conf. Ser.: Mater. Sci. Eng. 225(2017) 012173.

DOI: 10.1088/1757-899x/225/1/012173

Google Scholar

[35] Hssi, A. A., Atourki, L., Labchir, N., Ouafi, M., Abouabassi, K., Elfanaoui, A., & Bouabid, K. Optical and dielectric properties of electrochemically deposited p-Cu2O films. Materials Research Express. 7.1(2020) 016424.

DOI: 10.1088/2053-1591/ab6772

Google Scholar

[36] S.K. Sinhala, S.K. Ray & I. Mannaac. Effect of Al doping on structural, optical, and electrical properties of SnO2 thin films synthesized by pulsed laser deposition. Philosophical Magazine. 94(2014) 3507–3521.

DOI: 10.1080/14786435.2014.962641

Google Scholar

[37] R. Ruiz, A. Papadimitratos, Mayer, A. C., & Malliaras, G. G. Thickness dependence of mobility in pentacene thin‐film transistors. Advanced Materials. 17.14(2005) 1795-1798.

DOI: 10.1002/adma.200402077

Google Scholar

[38] K.L. Chopra, Thin Film Phenomena book, pulsation in McGraw-Hill New York. (1969).

Google Scholar

[39] M. P. F., Graça, Meireles, A., Nico, C., & Valente, M. A. Nb2O5 nanosize powders prepared by sol–gel–Structure, morphology and dielectric properties. J. of Alloys and Comp. 553(2013) 177-182.

DOI: 10.1016/j.jallcom.2012.11.128

Google Scholar

[40] M. N. Siddique, A. Ahmed, & Tripathi, P. Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures. J. of Alloys and Comp. 735 (2018) 516-529.

DOI: 10.1016/j.jallcom.2017.11.114

Google Scholar

[41] C. Xu, J. Tamaki, N. Miura and N. Yamazoe. CuO-SnO2 element for highly sensitive and selective detection of H2S. Sens. and Actua. B: Chem. 9(1992) 3197-203.

DOI: 10.1016/0925-4005(92)80216-k

Google Scholar

[42] A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang and T.J. Marks. Chemical and Thin-Film Strategies for New Transparent Conducting Oxides. MRS Bulletin. 25(2000) 45–51.

DOI: 10.1557/mrs2000.150

Google Scholar

[43] M. K. R. Khan, M. A. Rahman, M. Shahjahan, M. M. Rahman, M. A. Hakim, D. K. Saha, & J. U. Khan, Effect of Al-doping on optical and electrical properties of spray pyrolytic nano-crystalline CdO thin films. Current App. Phys. 10.3(2010) 790-796.

DOI: 10.1016/j.cap.2009.09.016

Google Scholar