Zea Mays Surfactant as Corrosion Inhibition of Copper and its Electrochemical Assessment in Hot Acidic Solution for Chemo-Mechanical Application

Article Preview

Abstract:

This study examines the corrosion propagation of copper at temperature of 298 K, 313 K and 323 K with the help of potentiodynamic polarization route and scanning electron microscopy analyses in 0.5 M HCl. The effect of zea mays surfactant at 0%, 5%, 10%, 15,%. 20% was considered and varied to estimate the inhibitive efficiency. From the results, increase in concentration of zea mays surfactant, practically reduce the corrosion rate and provides compact heteroatom thin film layer. Interestingly, metastable pitting evolution was absent until 313 K at 20 mL concentration, but at 323 K, passivation behavior tendency was absent and pits formation was seen. Undoubtedly, addition of surfactant up to 20mL into 50 mL 0.5M HCl acid shows a reduction in copper degradation which might have caused steel corrosion reaction to endothermic. The morphology study established that pit formation occur more at higher temperature of 323 K as against the 298 K. The inhibitor exhibited a physical type adsorption mechanism with inhibitive efficiency close to 90% at 20 mL admixed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1050)

Pages:

81-91

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Antonijevic , M. M., & Petrovic , M. B. (2008). Copper Corrosion Inhibitors. A review . Int. J. Electrochem. Sci, 1-28.

Google Scholar

[2] Atkins, P., & Depaula, J. (2010). Physical Chemistry, 8th edition. Oxfort: Oxfort Press.

Google Scholar

[3] Ayeni, F. A., Aigbodiun, V. S., & Yaro, S. A. (2007). Non-toxic Plant Extract as Corrosion Inhibitor for Chil Cast Al-Zn-Mg Alloy in Caustic Soda Solution. Eurasian Chemico-Technological Journal, 9 (2), 91-96.

Google Scholar

[4] Abiola, O. K., Oforka, N. C., Ebenso, E. E., & Nwinuka, N. M. (2007). Eco-friendly corrosion inhibitors: The inhibitive action of Delonix Regia extract for the corrosion of aluminium in acidic media. Anti-Corrosion Methods and Materials, vol. 54, no. 4, 219-224.

DOI: 10.1108/00035590710762357

Google Scholar

[5] Azhar, M. E., Mernari, B., Traisnel, M., Bentiss, F., & Lagranee, M. (2001). Corrosion Inhibition of Mild Steel by the New Class of Inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in Acidic Media. Corrosion Science , 2229-2238.

DOI: 10.1016/s0010-938x(01)00034-8

Google Scholar

[6] Benabdellah, M., Aouniti, A., Dafali, A., Hammouti, B., Benkaddour, M., Yahyi, A., & Ettouhami, A. (2006). Appl. Surf. Sci., 252, 8341.

DOI: 10.1016/j.apsusc.2005.11.037

Google Scholar

[7] Bhajiwala, H. M., & Vashi, R. T. (2001). Ethanolamine, Diethanolamine Andtriethanolmine as Corrosion Inhibitors for Zinc in Binary Acid Mixture (HNO3 + H3PO4). Bulletin of Electrochemistry, 441-448.

Google Scholar

[8] Binks, B. P., Fletcher, P. D., Hicks, J. T., Horsup, D. I., & Durnie, W. H. (2005). Proceedings of NACE Corrosion/2005, Paper No. 05307. Houston: NACE International.

Google Scholar

[9] Bouklah, M., Hammouti, B., Benhadda, T., & Benkadour, M. (2005). Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5M H2SO4. Journal of Applied Electrochemistry, vol. 35, no. 11, 1095-1101.

DOI: 10.1007/s10800-005-9004-z

Google Scholar

[10] Bouyanzer, A., & Hammouti, B. (2004). Naturally occurring ginger as corrosion inhibitor for steel in molar hydrochloric acid at 353 K. Bulletin of Electrochemistry, 20(2), 63-65.

Google Scholar

[11] Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR Journal of Applied Chemistry, 38-45.

DOI: 10.9790/5736-0313845

Google Scholar

[12] El-Rehim, S. S., Rafaey, S. A., Taha, F., Saleh, M. B., & Ahmed, R. A. (2001). Corrosion Inhibition of Mild Steel in Acidic Medium using 2-aminothiophenol and 2-cyanomethyl benzothiazole. Journal of Applied Electrochemistry, 429-435.

DOI: 10.1023/a:1017592322277

Google Scholar

[13] Fayomi, O. S., Akande, I. G., & Nsikak, U. (2019). An Overview of Corrosion Inhibition using Green and Drug Inhibitors. Journal of Physics: Conference Series 1378.

DOI: 10.1088/1742-6596/1378/2/022022

Google Scholar

[14] Fiala, A., Chibani, A., Darchen, A., Boulkamh, A., & Djebbar, K. (2007). Investigations of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives. Applied Surface Science, vol.253, no.24, 9347-9356.

DOI: 10.1016/j.apsusc.2007.05.066

Google Scholar

[15] Fouda, A. S., Al-Sarawy, A. A., & El-Katori, E. E. (2006). Pyrazolone derivatives as corrosion inhibitors for C-steel HCl solution. Desalination, vol. 201, 1-13.

DOI: 10.1016/j.desal.2006.03.519

Google Scholar

[16] Fouda, A. S., Migahed, M. A., Atia, A. A., & Mousa, I. M. (2016). Corrosion Inhibition and Adsorption Behavior of Some Cationic Surfactants on Carbon Steel in Hydrochloric Acid Solution. J Bio Tribo Corros.

DOI: 10.1007/s40735-016-0052-1

Google Scholar

[17] Gupta, R. K., Malviya, M., Verma, C., & Quarishi, M. A. (2017). Aminoazobenzene and diaminoazbenzene functionalized graphene oxides as novel class of corrosion inhibitors for mild steel: expeimental and DFT studies. Master Chem Phys 198, 360-373.

DOI: 10.1016/j.matchemphys.2017.06.030

Google Scholar

[18] Duthil, J. P., Mankowski, G., & Giusti, A. (1996). The Synergetic Effect of Chloride and Sulphate on Pitting Corrosion of Copper. Corrosion Science 38(10), 1839-1849.

DOI: 10.1016/s0010-938x(96)88250-3

Google Scholar

[19] El- Etre, A. Y. (2006). Khillah extract as inhibitor for acid corrosion of SX 316 steel. Applied Surface Science, vol. 252, no. 24, 8251-8525.

DOI: 10.1016/j.apsusc.2005.11.066

Google Scholar

[20] El-Etre, A. Y. (2003). Inhibition of aluminum corrosion using Opuntia extract. Corrosion science, vol.45, no. 11, 2485-2495.

DOI: 10.1016/s0010-938x(03)00066-0

Google Scholar

[21] El-Rehim, S. S., Rafaey, S. A., Taha, F., Saleh, M. B., & Ahmed, R. A. (2001). Corrosion Inhibition of Mild Steel in Acidic Medium using 2-aminothiophenol and 2-cyanomethyl benzothiazole. Journal of Applied Electrochemistry, 429-435.

DOI: 10.1023/a:1017592322277

Google Scholar

[22] Fayomi, O. S., Akande, I. G., & Nsikak, U. (2019). An Overview of Corrosion Inhibition using Green and Drug Inhibitors. Journal of Physics: Conference Series 1378.

DOI: 10.1088/1742-6596/1378/2/022022

Google Scholar

[23] Fiala, A., Chibani, A., Darchen, A., Boulkamh, A., & Djebbar, K. (2007). Investigations of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives. Applied Surface Science, vol.253, no.24, 9347-9356.

DOI: 10.1016/j.apsusc.2007.05.066

Google Scholar

[24] Fingsgar, M., & Jackson, J. (2014). Application of Corrosion Inhibitors for Steels in Acidic Meida for the Oil and Gas Industry. A review, Corrosion Science, 86, 17-41.

DOI: 10.1016/j.corsci.2014.04.044

Google Scholar

[25] Fouda, A. S., Al-Sarawy, A. A., & El-Katori, E. E. (2006). Pyrazolone derivatives as corrosion inhibitors for C-steel HCl solution. Desalination, vol. 201, 1-13.

DOI: 10.1016/j.desal.2006.03.519

Google Scholar

[26] Fouda, A. S., Migahed, M. A., Atia, A. A., & Mousa, I. M. (2016). Corrosion Inhibition and Adsorption Behavior of Some Cationic Surfactants on Carbon Steel in Hydrochloric Acid Solution. J Bio Tribo Corros.

DOI: 10.1007/s40735-016-0052-1

Google Scholar

[27] Kiselev, V. D., Ukhlovtsev, S. M., Podobaev, A. N., & Reformatskaya, I. (2006). Analysis of Corrosion Behavior of Steel 3 in Chloride Solutions by using Neural Networks. Protection of Metals, 42 (5), 452-458.

DOI: 10.1134/s0033173206050031

Google Scholar

[28] Kliskic, M., Radoservic, J., Gudic, S., & Katalinic, V. (2000). Aqueous extract of Rosmarinus officinalis L. as inhibitor of AlMg alloy corrosion in chloride solution. Journal of Applied Electrochemistry, vol. 30, no. 7, 823-830.

Google Scholar

[29] Louis, H., Japari, J., Sadia, A., Philip, M., & Bamanga, A. (2017). Photochemical screening and corrosion inhibition of Poupartia birrea back extracts as a potential green inhibitor for mild steel in 0.5 M H2SO4 medium. WNOFNS 10 , 95-100.

Google Scholar

[30] Lucey, V. F. (1967). Mechanisms of Pitting Corrosion of Copper in Supply Waters. Br. Corros. Jour. 2, 175-187.

Google Scholar

[31] Finšgar M, Milošev I. 2010. Inhibition of copper corrosion by 1, 2, 3-benzotriazole: A review. Corrosion science, 1;52(9):2737-49.

DOI: 10.1016/j.corsci.2010.05.002

Google Scholar

[32] Loto, C.A. Fayomi O.S.I. Loto R.T., Popoola. A.P.I., 2019. Potentiodynamic Polarization and Gravimetric Evaluation of Corrosion of Copper in 2M H2SO4 and its inhibition with Ammonium Dichromate Procedia Manufacturing 35,413–418.

DOI: 10.1016/j.promfg.2019.05.061

Google Scholar

[33] Fajobi, M. A., Fayomi, O. S. I., Akande, I. G., & Odunlami, O. A. (2019). Inhibitive Performance of Ibuprofen Drug on Mild Steel in 0.5 M of H 2 SO 4 Acid. Journal of Bio-and Tribo-Corrosion, 5(3), 79.

DOI: 10.1007/s40735-019-0271-3

Google Scholar

[34] Fayomi, O.S.I., Akande, I.G. and Nsikak, U., 2019, December. An Overview of Corrosion Inhibition using Green and Drug Inhibitors. In Journal of Physics: Conference Series (Vol. 1378, No. 2, p.022022). IOP Publishing.

DOI: 10.1088/1742-6596/1378/2/022022

Google Scholar

[35] Fayomi, O. S. I., & Popoola, A. P. I. (2019, December). Corrosion propagation challenges of mild steel in industrial operations and response to problem definition. In Journal of Physics: Conference Series (Vol. 1378, No. 2, p.022006). IOP Publishing.

DOI: 10.1088/1742-6596/1378/2/022006

Google Scholar

[36] Fayomi, O. S. I., & Akande, I. G. (2019). Corrosion mitigation of aluminium in 3.65% NaCl medium using hexamine. Journal of Bio-and Tribo-Corrosion, 5(1), 23.

DOI: 10.1007/s40735-018-0214-4

Google Scholar

[37] Fayomi, O. S. I., Akande, I. G., Popoola, A. P. I., & Molifi, H. (2019). Potentiodynamic polarization studies of Cefadroxil and Dicloxacillin drugs on the corrosion susceptibility of aluminium AA6063 in 0.5 M nitric acid. Journal of Materials Research and Technology, 8(3), 3088-3096.

DOI: 10.1016/j.jmrt.2018.12.028

Google Scholar