Synthesis and Characterisation of Iron Oxide Nanoparticles with Tunable Sizes by Hydrothermal Method

Article Preview

Abstract:

The present study investigates the effect of different reaction times on the crystallinity, surface morphology and size of iron oxide nanoparticles. In this synthetic system, aqueous iron (III) nitrate (Fe (NO3)3·9H2O) nonahydrate, provided the iron source and triethylamine was the precipitant and alkaline agent. The as-synthesised iron oxide nanoparticles were characterised by X-ray diffraction (XRD), Rietveld analysis, Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Prolonged reaction times indicated the change on nanoparticle shape from elongated nanorods to finally distorted nanocubes. Analysis on the crystallinity of the iron oxide nanoparticles suggest that the samples mainly consist of two phases, which are Goethite (α-FeOOH) and Hematite (α-Fe2O3) respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1053)

Pages:

176-181

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Olawoyin, "Nanotechnology: The future of fire safety,, Saf.Sci., vol. 110, pp.214-221.

Google Scholar

[2] F. Dassenoy, "Nanoparticles as Additives for the Development of High Performance and Environmentally Friendly Engine Lubricants,, Tribology Online, vol. 14, no. 5, pp.237-253.

DOI: 10.2474/trol.14.237

Google Scholar

[3] H. Hayashi and Y. Hakuta, "Hydrothermal synthesis of metal oxide nanoparticles in supercritical water,, Materials, vol. 3, no. 7, pp.3794-3817.

DOI: 10.3390/ma3073794

Google Scholar

[4] X. Chen, Y. Yin, J. Lu and X. Chen, "Preparation and properties of iron-based flame-retardant reinforcing agent,, J.Fire Sci., vol. 32, no. 2, pp.179-190.

DOI: 10.1177/0734904113501030

Google Scholar

[5] Lokesh Srinath Ganapathe, Mohd Ambri Mohamed, Rozan Mohamad Yunus and Dilla Duryha Berhanuddin, "Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation,, Magnetochemistry, vol. 6, no. 4, Jan 01, p.68.

DOI: 10.3390/magnetochemistry6040068

Google Scholar

[6] P. Karpagavinayagam and C. Vedhi, "Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract,, Vacuum, vol. 160, pp.286-292.

DOI: 10.1016/j.vacuum.2018.11.043

Google Scholar

[7] A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan and Y. Rui, "Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications,, Front. Chem., vol. 0.

DOI: 10.3389/fchem.2021.629054

Google Scholar

[8] E. Gkanas, "In vitro magnetic hyperthermia response of iron oxide MNP's incorporated in DA3, MCF-7 and HeLa cancer cell lines,, Open Chemistry, vol. 11, no. 7, -07-01, p.1042.

DOI: 10.2478/s11532-013-0246-z

Google Scholar

[9] U.T. Lam, R. Mammucari, K. Suzuki and N.R. Foster, "Processing of Iron Oxide Nanoparticles by Supercritical Fluids,, Ind. Eng. Chem. Res., vol. 47, no. 3, -02, p.599.

DOI: 10.1021/ie070494+

Google Scholar

[10] L. Hu, A. Percheron, D. Chaumont and C. Brachais, "Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite,, J Sol-Gel Sci Technol, vol. 60, no. 2, Nov, pp.198-205.

DOI: 10.1007/s10971-011-2579-4

Google Scholar

[11] M. Niederberger and N. Pinna, "Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application,,, (2009).

Google Scholar

[12] L.M. Cursaru, R.M. Piticescu, D.V. Dragut, I.A. Tudor, V. Kuncser, N. Iacob and F. Stoiciu, "The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials,, Nanomaterials (Basel, Switzerland), vol. 10, no. 1, Jan 02, p.85.

DOI: 10.3390/nano10010085

Google Scholar

[13] A. Rotander, A. Kärrman, L.L. Toms, M. Kay, J.F. Mueller and M.J. Gómez Ramos, "Novel Fluorinated Surfactants Tentatively Identified in Firefighters Using Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry and a Case-Control Approach,, Environ. Sci. Technol., vol. 49, no. 4, -01-22, p.2434.

DOI: 10.1021/es503653n

Google Scholar

[14] X. Zhang, Z. Bao, C. Hu, J. Li-Shuai and Y. Chen, "Organic pollutant loading and biodegradability of firefighting foam,, IOP conference series. Earth and environmental science, vol. 94, no. 1, Nov 01, p.12137.

DOI: 10.1088/1755-1315/94/1/012137

Google Scholar

[15] M. Marchetti, M. Offroy, F. Abdat, P. Branchu, P. Bourson, C. Jobard, J. Durmont and G. Casteran, "Chemometrics-Assisted Monitoring in Raman Spectroscopy for the Biodegradation Process of an Aqueous Polyfluoroalkyl Ether from a Fire-Fighting foam in an Environmental Matrix,, Environments, vol. 7, no. 1.

DOI: 10.3390/environments7010004

Google Scholar

[16] L. Wang, X.C. Fu, Z.M. Bao and X.Z. Zhang, "Study on the Biodegradation of Class a Foam by CO2 Evolution Method,, Advanced Materials Research, vol. 518-523, May 14, pp.525-528.

DOI: 10.4028/www.scientific.net/amr.518-523.525

Google Scholar

[17] A.V. Vinogradov, D.S. Kuprin, I.M. Abduragimov, G.N. Kuprin, E. Serebriyakov and V.V. Vinogradov, "Silica foams for fire prevention and firefighting,, ACS applied materials & interfaces, vol. 8, no. 1, pp.294-301.

DOI: 10.1021/acsami.5b08653

Google Scholar

[18] B. Tang, Z. Wu and W. Chen, "Effect of nanosilica on foam and thermal stability of a foam extinguishing agent,, Nanomaterials and Energy, vol. 6, no. 2, pp.67-73.

DOI: 10.1680/jnaen.17.00003

Google Scholar

[19] B. Long, D. Wang, R. Niu, H. Song, Y. Ma, G. Qu and J. He, "In-situ activation of nano-silica and its foam stabilization mechanism,, J.Dispersion Sci.Technol., vol. 41, no. 1, pp.72-80.

DOI: 10.1080/01932691.2018.1554487

Google Scholar