[1]
F. Vercruysse, C. Celada-Casero, B.M. Linke, et al. The effect of Nb on the strain rate and temperature dependent behaviour of quenching & partitioning steels, J. Materials Science & Engineering A. 169 (2020) 110612.
DOI: 10.1016/j.msea.2020.140293
Google Scholar
[2]
Jian.kai. L, Yong. L, Chun.xu. W, et al. Mathematical model of austenite grain growth for A315 steel, J. Heat Treatment of Metals. 041 (2016) 183-189.
Google Scholar
[3]
Yang. Z, Xiao.hua. L, Yong.chang. L, et al. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling, J. Materials Characterization. 169 (2020)110612.
DOI: 10.1016/j.matchar.2020.110612
Google Scholar
[4]
Chang.fu. D, Qing. Y, Guang. X, et al. Effect of Nb on microstructure and properties of hot rolled low carbon bainite steel, J. Heat Treatment of Metals. 045 (2020) 197-200.
Google Scholar
[5]
Yan. C, Dan.tian. Z, Yong.chang. L, et al. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels, J. Materials Characterization, 84 (2013) 232-239.
DOI: 10.1016/j.matchar.2013.08.005
Google Scholar
[6]
E.I. Hernandez-Duran, L. Corallo, T. Ros-Yanez, et al. Influence of Mo-Nb-Ti additions and peak annealing temperature on the microstructure and mechanical properties of low alloy steels after ultrafast heating process, J. Materials Science & Engineering A. 808 (2021) 140928.
DOI: 10.1016/j.msea.2021.140928
Google Scholar
[7]
M.C. Jo, J. Yoo, S. kim, et al. Effects of Nb and Mo alloying on resistance to hydrogen embrittlement in 1.9GPa-grade hot-stamping steels, J. Materials Science & Engineering A. 789 (2020) 139656.
DOI: 10.1016/j.msea.2020.139656
Google Scholar
[8]
M. Hillert. On the theory of normal and abnormal grain growth, J. Acta Metallurgica. 013 (1965) 227-238.
DOI: 10.1016/0001-6160(65)90200-2
Google Scholar
[9]
Zhi.ying. L, Chun.xu. W, Xian.ming. L, et al. Effect of trace Nb element on austenite grain growth of DT300 steel, J. Material & Heat Treatment. 041 (2012) 110-115.
Google Scholar
[10]
Chan. J, Ya.zheng. L, Zhao.lei. Z, et al. Dynamic observation and analysis of austenite grain growth and inclusions in spring steel containing niobium, J. SPECIAL STEEL. 032 (2011) 58-60.
Google Scholar
[11]
Zhir.ong. Y, Des.heng. Y, Huai.jun. Y. Effect of quenching process and Nb element on grain size of pre-austenite of 30MnB5 steel, J. Heat Treatment of Metals. 045 (2020) 218-221.
Google Scholar
[12]
Xiang. L, Qun. li. D, Xin. L. Effect of heating process on austenite grain growth of Nb-Ti microalloyed steel, J. Iron and Steel. 054 (2019) 120-131.
Google Scholar
[13]
Lei. Z, Thomas. K. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel, J. Materials Science & Engineering A. 613 (2014) 326-335.
DOI: 10.1016/j.msea.2014.06.106
Google Scholar
[14]
L.M. Fu, H.R. Wang, W. Wang. Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels, J. Materials Science and Technology. 027 (2011) 996-1001.
DOI: 10.1179/1743284711y.0000000001
Google Scholar
[15]
Jian.guo. Y, Gui.ying. Q. The effect of Nb(C,N) dissolution on the grain growth behavior of high-niobium austenite, J. China Metallurgy. 029 (2019) 52-57.
Google Scholar
[16]
T. Kinoshita, M. Ohno. Phase-field simulation of abnormal grain growth during carburization in Nb-added steel, J. Computational Materials Science. 177 (2020) 109558.
DOI: 10.1016/j.commatsci.2020.109558
Google Scholar
[17]
Bo. L. Austenite grain growth model and application during structural steel heating, J. Hot Working Technology. 042 (2013) 80-82.
Google Scholar
[18]
Shuai. Y, Zheng. T, Lin.xiu. D. Study on the Kinetics of Austenite Grain Growth of Medium Manganese Steel, J. Hot Working Technology. 049 (2020) 128-130.
Google Scholar