[1]
W. Zhang, H. Liao, Z. Hu, S. Zhang, B. Chen, H. Yang, Y. Wang, H. Zhu, Interfacial characteristics and mechanical properties of additive manufacturing martensite stainless steel on the Cu-Cr alloy substrate by directed energy deposition, J. Mater. Sci. Technol., 90 (2021) 121-132.
DOI: 10.1016/j.jmst.2021.03.008
Google Scholar
[2]
X.C. Zhang, T. Pan, A. Flood, Y.T. Chen, Y.L. Zhang, F. Liou, Investigation of copper/stainless steel multi-metallic materials fabricated by laser metal deposition, Mater. Sci. Eng., A, 811 (2021) 141071.
DOI: 10.1016/j.msea.2021.141071
Google Scholar
[3]
M. Velu, S. Bhat, Metallurgical and mechanical examinations of steel-copper joints arc welded using bronze and nickel-base superalloy filler materials, Mater. Des., 47 (2013) 793-809.
DOI: 10.1016/j.matdes.2012.12.073
Google Scholar
[4]
S.S. Zhang, H.H. Zhu, L. Zhang, W.Q. Zhang, H.Q. Yang, X.Y. Zeng, Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting, Mater. Lett., 237 (2019) 306-309.
DOI: 10.1016/j.matlet.2018.11.118
Google Scholar
[5]
M.K. Imran, S.H. Masood, M. Brandt, S. Bhattacharya, J. Mazumder, Direct metal deposition (DMD) of H13 tool steel on copper alloy substrate: Evaluation of mechanical properties, Mater. Sci. Eng., A, 528 (2011) 3342-3349.
DOI: 10.1016/j.msea.2010.12.099
Google Scholar
[6]
C.L. Tan, K.S. Zhou, W.Y. Ma, L. Min, Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture, Mater. Des., 155 (2018) 77-85.
DOI: 10.1016/j.matdes.2018.05.064
Google Scholar
[7]
H. Yan, J. Zhang, P.L. Zhang, Z.S. Yu, C.G. Li, P.Q. Xu, Y.L. Lu, Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold, Surface & Coatings Technology, 232 (2013) 362-369.
DOI: 10.1016/j.surfcoat.2013.05.036
Google Scholar
[8]
M.Y. Li, M.J. Chao, E.J. Liang, J.M. Yu, J.J. Zhang, D.C. Li, Improving wear resistance of pure copper by laser surface modification, Appl Surf Sci, 258 (2011) 1599-1604.
DOI: 10.1016/j.apsusc.2011.10.006
Google Scholar
[9]
P.L. Zhang, X.P. Liu, H. Yan, Phase composition, microstructure evolution and wear behavior of Ni-Mn-Si coatings on copper by laser cladding, Surface & Coatings Technology, 332 (2017) 504-510.
DOI: 10.1016/j.surfcoat.2017.08.072
Google Scholar
[10]
J. Yin, D.Z. Wang, L. Meng, L.D. Ke, Q.W. Hu, X.Y. Zeng, High-temperature slide wear of Ni-Cr-Si metal silicide based composite coatings on copper substrate by laser-induction hybrid cladding, Surface & Coatings Technology, 325 (2017) 120-126.
DOI: 10.1016/j.surfcoat.2017.06.063
Google Scholar
[11]
Y.-Y. Chuang, R. Schmid, Y.A. Chang, Thermodynamic analysis of the iron-copper system I: The stable and metastable phase equilibria, Metall. Trans. A, 15 (1984) 1921-1930.
DOI: 10.1007/bf02664905
Google Scholar
[12]
X.Q. Dai, M. Xie, S.F. Zhou, C.X. Wang, J.X. Yang, Z.Y. Li, Formation and properties of a self-assembled Cu-Fe-Ni-Cr-Si immiscible composite by laser induction hybrid cladding, Journal of Alloys and Compounds, 742 (2018) 910-917.
DOI: 10.1016/j.jallcom.2018.01.387
Google Scholar
[13]
C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Formation of immiscible alloy powders with egg-type microstructure, Science, 297 (2002) 990-993.
DOI: 10.1126/science.1073050
Google Scholar
[14]
J. He, J.Z. Zhao, L. Ratke, Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys, Acta Mater., 54 (2006) 1749-1757.
DOI: 10.1016/j.actamat.2005.12.023
Google Scholar