Synthesis of Graphene/Silver/Molybdenum Disulphide Composite for Supercapacitor Application

Article Preview

Abstract:

In this study, pristine graphene/silver/molybdenum disulphide (G/Ag/MoS2) and reduced graphene oxide/silver/molybdenum disulphide (rGO/Ag/MoS2) composites materials were prepared via green solvothermal synthesis method and evaluated as supercapacitor electrodes. The morphology and structure of composites were examined by using Scanning Electron Microscopy (SEM), Energy dispersive spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and Raman spectroscopy. SEM and TEM indicate successful reduction of silver nitrate (AgNO3) to spherical Ag nanoparticles (NPs) by sodium citrate. The Ag NPs were observed to be evenly deposited on sheets of rGO and MoS2. From the XPS analysis, the spherical Ag NPs exist in zero-valent state, reflecting successful reduction. Based on cyclic voltammetry (CV) performed under 50 mV/s scan rate, G/Ag/MoS2 ternary composite exhibits the highest specific capacitance of 56.38 F/g which is 31 % and 29 % enhancement in specific capacitance of rGO/Ag/MoS2 ternary composite and Ag/MoS2 binary composite, respectively. It is believed that the presence of graphene may provide conductive pathway and a larger surface area for the distribution of Ag NPs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1054)

Pages:

21-30

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Yan, Handbook of Clean Energy Systems, Hoboken, John Wiley & Sons, (2013).

Google Scholar

[2] A. Pandolfo, A. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11-27.

DOI: 10.1016/j.jpowsour.2006.02.065

Google Scholar

[3] Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, J. Liu, A review of supercapacitors: based on graphene and redox-active organic materials, Materials. 12 (2019).

DOI: 10.3390/ma12050703

Google Scholar

[4] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sust. Energ. Rev. 58 (2016) 1189-1206.

DOI: 10.1016/j.rser.2015.12.249

Google Scholar

[5] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[6] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100 (2008).

DOI: 10.1103/physrevlett.100.016602

Google Scholar

[7] M. Cai, D. Thorpe, D.H. Adamson, H.C. Schniepp, Methods of graphite exfoliation, J. Mater. Chem. 22 (2012) 24992-25002.

DOI: 10.1039/c2jm34517j

Google Scholar

[8] H.C. Schniepp, J. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, J Phys. Chem. B. 110 (2006) 8538-8539.

DOI: 10.1021/jp060936f

Google Scholar

[9] A. Muzaffar, M.B. Ahamed, K. Deskmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications, Renew. Sustain. Energy Rev. 101 (2019) 123-145.

DOI: 10.1016/j.rser.2018.10.026

Google Scholar

[10] C.M. Chuang, C.W. Huang, H. Teng, J.M. Ting, Effects of carbon nanotube grafting on the performance of electric double layer capacitors, Energy Fuels. 24 (2010) 6476-6482.

DOI: 10.1021/ef101208x

Google Scholar

[11] P.K. Kalambate, R.A. Dar, S.P. Karna, A.K. Srivastava, High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy electrode, J. Power Sources. 276 (2015) 262-270.

DOI: 10.1016/j.jpowsour.2014.11.130

Google Scholar

[12] A.I. Oje, A.A. Ogwu, M. Mirzaeian, N. Tsendzughul, A.M. Oje, Pseudo-capacitance of silver oxide thin film electrodes in ionic liquid for electrochemical energy application, J. Sci-Adv. Mater. Dev. 4 (2019) 213-222.

DOI: 10.1016/j.jsamd.2019.04.003

Google Scholar

[13] C.K. Sumesh, Towards efficient photon management in nanostructured solar cells: role of 2D layered transition metal dichalcogenides semiconductors, Sol. Energy Mater. Sol. Cells. 192 (2019) 16-23.

DOI: 10.1016/j.solmat.2018.12.016

Google Scholar

[14] K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material, Electrochim. Acta. 132 (2014) 397-403.

DOI: 10.1016/j.electacta.2014.04.007

Google Scholar

[15] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11 (2012) 963-969.

DOI: 10.1038/nmat3439

Google Scholar

[16] T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability, Nano Lett. 14 (201) 2522-2527.

DOI: 10.1021/nl500255v

Google Scholar

[17] L. Rivas, S. Sanchez-Cortes, J.V. García-Ramos, G. Morcillo, Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor, Langmuir. 17 (2001) 574-577.

DOI: 10.1021/la001038s

Google Scholar

[18] B. Khodashenas, H.R. Ghorbani, Synthesis of silver nanoparticles with different shapes, Arab. J. Chem. 12 (2015) 1823-1838.

Google Scholar

[19] K. Dyamenahalli, A. Famili, R. Shandas, Characterization of shape-memory polymers for biomedical applications, in: L. Yahia, Shape Memory Polymers for Biomedical Applications, Elsevier, 2015, pp.35-63.

DOI: 10.1016/b978-0-85709-698-2.00003-9

Google Scholar

[20] J. Tuoriniemi, A.C.J.H. Johnsson, J.P. Holmberg, S. Gustafsson, J.A. Gallego-Urrea, E. Olsson, J.B.C. Pettersson, M. Hassellöv, Intermethod comparison of the particle size distributions of colloidal silica nanoparticles, Sci. Technol. Adv. Mater. 15 (2014) 035009.

DOI: 10.1088/1468-6996/15/3/035009

Google Scholar

[21] X. Wu, L. Meng, W. Zhang, Y. Wang, Oustanding performance supercapacitor based on the ternary graphene-silver-polypyrrole hybrid nanocomposite from -45 to 80 °C, Mater. Chem. Phys. 206 (2018) 259-269.

DOI: 10.1016/j.matchemphys.2017.12.028

Google Scholar

[22] L. Carlini, C. Fasolato, P. Postorino, I. Fratoddi, I. Venditti, G. Testa, C. Battocchio, Comparison between silver and gold nanoparticles stabilized with negatively charged hydrophilic thiols: SR-XPS and SERS as probes for structural differences and similarities, Colloids Surf. 532 (2017) 183-188.

DOI: 10.1016/j.colsurfa.2017.05.045

Google Scholar

[23] Y.I. Kim, E. Samuel, B. Joshi, M.W. Kim, T.G. Kim, M.T. Swihart, S.S. Yoon, Highly efficient electrodes for supercapacitors using silver-plated carbon nanofibers with enhanced mechanical flexibility and long-term stability, Chem. Eng. J. 35 (2018) 189-196.

DOI: 10.1016/j.cej.2018.07.066

Google Scholar

[24] J.K. Gan, Y.S. Lim, N.M. Huang, H.N. Lim, Hybrid silver nanoparticle/nanocluster-decorated polypyrrole for high-performance supercapacitors, RSC Advances. 5 (2015) 74986-75837.

DOI: 10.1039/c5ra14941j

Google Scholar

[25] A. Santoni, F. Rondino, C. Malerba, M. Valentini, A. Mittiga, Electronic structure of Ar+ ion-sputtered thin-film MoS2: A XPS and IPES study, Appl. Surf. Sci. 392 (2017) 795-800.

DOI: 10.1016/j.apsusc.2016.09.007

Google Scholar

[26] M.A. Bissett, I.A. Kinloch, R.A.W. Dryfe, Characterization of MoS2 – Graphene composites for high-performance coin cell supercapacitors, ACS Appl. Mater. Interfaces. 7 (2015) 17388-17398.

DOI: 10.1021/acsami.5b04672

Google Scholar

[27] M. Manuraj, K.V. Kavya Nair, K.N. Narayanan Unni, R.B. Rakh, High performance supercapacitor based on MoS2 nanostructures with near commercial mass loading, J. Alloys Compd. 819 (2019) 152963.

DOI: 10.1016/j.jallcom.2019.152963

Google Scholar

[28] W. Xiao, W. Zhou, T. Feng, Y. Zhang, H. Liu, L. Tian, Simple synthesis of molybdenum disulfide/reduced graphene oxide composite hollow microspheres as supercapacitor electrode material, Materials. 9 (2016) 783.

DOI: 10.3390/ma9090783

Google Scholar

[29] P. Salarizadeh, M.B. Askari, M. Seifi, S.M. Rozati, S.S. Eisazadeh, Pristine NiCo2O4 nanorods loaded rGO electrode as a remarkable electrode material for asymmetric supercapacitors, Mat. Sci. Semicon. Proc. 114 (2020) 105078.

DOI: 10.1016/j.mssp.2020.105078

Google Scholar

[30] A. Verma, R.B. Choudhary, Influence of CdS nanorods on the optoelectronic properties of 2-dimensional rGO decorated polyindole matrix, Mat. Sci. Semicon. Proc. 110 (2020) 104948.

DOI: 10.1016/j.mssp.2020.104948

Google Scholar

[31] M. Majumder, R.B. Choudhary, S.P. Koiry, A.K. Thakur, U. Kumar, Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications, Electrochim. Acta. 248 (2017) 98-111.

DOI: 10.1016/j.electacta.2017.07.107

Google Scholar

[32] A. Jorio, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene related systems, Weinheim, Wiley-VCH, (2011).

DOI: 10.1002/9783527632695

Google Scholar

[33] R. Dai, J. Chang, Y. Li, S. Shi, H. Li, Z. Yang, R. Ding, M. Yang, Performance enhancement of passively Q-switch Nd: YO4 laser using graphene-molybdenum disulphide heterojunction as a saturable absorber, Opt. Laser. Technol. 117 (2019) 265-271.

DOI: 10.1016/j.optlastec.2019.04.042

Google Scholar

[34] Q. Wang, L. Yang, F. Jia, Y. Li, S. Song, Removal of Cd (II) from water by using nano-scale molybdenum disulphide sheets as adsorbents, J. Mol. Liq. 263 (2018) 526-533.

DOI: 10.1016/j.molliq.2018.04.149

Google Scholar

[35] K.T. Tu, C.K. Chung, Enhancement of surface raman spectroscopy performance by silver nanoparticels on resin nanorods arrays from anodic aluminum oxide template, J. Electrochem. Soc. 164 (2017) B3081-B3086.

DOI: 10.1149/2.0121705jes

Google Scholar

[36] N.A. Kumar, M.A. Dar, R. Gul, J.B. Baek, Graphene and molybdenum disulfide hybrids: synthesis and applications, Mater. Today. 18 (2015) 286-298.

DOI: 10.1016/j.mattod.2015.01.016

Google Scholar

[37] Z. Wu, L. Xie, Y. Xiao, D. Wang, Silver wrapped MoS2 hybrid electrode materials for high performance supercapacitor, J. Alloys Compd. 708 (2017) 763-768.

DOI: 10.1016/j.jallcom.2017.03.048

Google Scholar

[38] S. Mao, K. Yu, S. Cui, Z. Bo, G. Lu, J. Chen, A new reducing agent to prepare single layer, high-quality reduced graphene oxide for device applications, Nanoscale. 3 (2011) 2849-2853.

DOI: 10.1039/c1nr10270b

Google Scholar

[39] Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Green preparation of reduced graphene oxide for sensing and energy storage applications, Sci. Rep. 4 (2014) 4684.

DOI: 10.1038/srep04684

Google Scholar

[40] S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci. 4 (2011) 1855-1865.

DOI: 10.1039/c1ee01039e

Google Scholar