[1]
J. Yan, Handbook of Clean Energy Systems, Hoboken, John Wiley & Sons, (2013).
Google Scholar
[2]
A. Pandolfo, A. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11-27.
DOI: 10.1016/j.jpowsour.2006.02.065
Google Scholar
[3]
Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, J. Liu, A review of supercapacitors: based on graphene and redox-active organic materials, Materials. 12 (2019).
DOI: 10.3390/ma12050703
Google Scholar
[4]
A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sust. Energ. Rev. 58 (2016) 1189-1206.
DOI: 10.1016/j.rser.2015.12.249
Google Scholar
[5]
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.
DOI: 10.1016/j.ssc.2008.02.024
Google Scholar
[6]
S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100 (2008).
DOI: 10.1103/physrevlett.100.016602
Google Scholar
[7]
M. Cai, D. Thorpe, D.H. Adamson, H.C. Schniepp, Methods of graphite exfoliation, J. Mater. Chem. 22 (2012) 24992-25002.
DOI: 10.1039/c2jm34517j
Google Scholar
[8]
H.C. Schniepp, J. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, J Phys. Chem. B. 110 (2006) 8538-8539.
DOI: 10.1021/jp060936f
Google Scholar
[9]
A. Muzaffar, M.B. Ahamed, K. Deskmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications, Renew. Sustain. Energy Rev. 101 (2019) 123-145.
DOI: 10.1016/j.rser.2018.10.026
Google Scholar
[10]
C.M. Chuang, C.W. Huang, H. Teng, J.M. Ting, Effects of carbon nanotube grafting on the performance of electric double layer capacitors, Energy Fuels. 24 (2010) 6476-6482.
DOI: 10.1021/ef101208x
Google Scholar
[11]
P.K. Kalambate, R.A. Dar, S.P. Karna, A.K. Srivastava, High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy electrode, J. Power Sources. 276 (2015) 262-270.
DOI: 10.1016/j.jpowsour.2014.11.130
Google Scholar
[12]
A.I. Oje, A.A. Ogwu, M. Mirzaeian, N. Tsendzughul, A.M. Oje, Pseudo-capacitance of silver oxide thin film electrodes in ionic liquid for electrochemical energy application, J. Sci-Adv. Mater. Dev. 4 (2019) 213-222.
DOI: 10.1016/j.jsamd.2019.04.003
Google Scholar
[13]
C.K. Sumesh, Towards efficient photon management in nanostructured solar cells: role of 2D layered transition metal dichalcogenides semiconductors, Sol. Energy Mater. Sol. Cells. 192 (2019) 16-23.
DOI: 10.1016/j.solmat.2018.12.016
Google Scholar
[14]
K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material, Electrochim. Acta. 132 (2014) 397-403.
DOI: 10.1016/j.electacta.2014.04.007
Google Scholar
[15]
J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11 (2012) 963-969.
DOI: 10.1038/nmat3439
Google Scholar
[16]
T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability, Nano Lett. 14 (201) 2522-2527.
DOI: 10.1021/nl500255v
Google Scholar
[17]
L. Rivas, S. Sanchez-Cortes, J.V. García-Ramos, G. Morcillo, Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor, Langmuir. 17 (2001) 574-577.
DOI: 10.1021/la001038s
Google Scholar
[18]
B. Khodashenas, H.R. Ghorbani, Synthesis of silver nanoparticles with different shapes, Arab. J. Chem. 12 (2015) 1823-1838.
Google Scholar
[19]
K. Dyamenahalli, A. Famili, R. Shandas, Characterization of shape-memory polymers for biomedical applications, in: L. Yahia, Shape Memory Polymers for Biomedical Applications, Elsevier, 2015, pp.35-63.
DOI: 10.1016/b978-0-85709-698-2.00003-9
Google Scholar
[20]
J. Tuoriniemi, A.C.J.H. Johnsson, J.P. Holmberg, S. Gustafsson, J.A. Gallego-Urrea, E. Olsson, J.B.C. Pettersson, M. Hassellöv, Intermethod comparison of the particle size distributions of colloidal silica nanoparticles, Sci. Technol. Adv. Mater. 15 (2014) 035009.
DOI: 10.1088/1468-6996/15/3/035009
Google Scholar
[21]
X. Wu, L. Meng, W. Zhang, Y. Wang, Oustanding performance supercapacitor based on the ternary graphene-silver-polypyrrole hybrid nanocomposite from -45 to 80 °C, Mater. Chem. Phys. 206 (2018) 259-269.
DOI: 10.1016/j.matchemphys.2017.12.028
Google Scholar
[22]
L. Carlini, C. Fasolato, P. Postorino, I. Fratoddi, I. Venditti, G. Testa, C. Battocchio, Comparison between silver and gold nanoparticles stabilized with negatively charged hydrophilic thiols: SR-XPS and SERS as probes for structural differences and similarities, Colloids Surf. 532 (2017) 183-188.
DOI: 10.1016/j.colsurfa.2017.05.045
Google Scholar
[23]
Y.I. Kim, E. Samuel, B. Joshi, M.W. Kim, T.G. Kim, M.T. Swihart, S.S. Yoon, Highly efficient electrodes for supercapacitors using silver-plated carbon nanofibers with enhanced mechanical flexibility and long-term stability, Chem. Eng. J. 35 (2018) 189-196.
DOI: 10.1016/j.cej.2018.07.066
Google Scholar
[24]
J.K. Gan, Y.S. Lim, N.M. Huang, H.N. Lim, Hybrid silver nanoparticle/nanocluster-decorated polypyrrole for high-performance supercapacitors, RSC Advances. 5 (2015) 74986-75837.
DOI: 10.1039/c5ra14941j
Google Scholar
[25]
A. Santoni, F. Rondino, C. Malerba, M. Valentini, A. Mittiga, Electronic structure of Ar+ ion-sputtered thin-film MoS2: A XPS and IPES study, Appl. Surf. Sci. 392 (2017) 795-800.
DOI: 10.1016/j.apsusc.2016.09.007
Google Scholar
[26]
M.A. Bissett, I.A. Kinloch, R.A.W. Dryfe, Characterization of MoS2 – Graphene composites for high-performance coin cell supercapacitors, ACS Appl. Mater. Interfaces. 7 (2015) 17388-17398.
DOI: 10.1021/acsami.5b04672
Google Scholar
[27]
M. Manuraj, K.V. Kavya Nair, K.N. Narayanan Unni, R.B. Rakh, High performance supercapacitor based on MoS2 nanostructures with near commercial mass loading, J. Alloys Compd. 819 (2019) 152963.
DOI: 10.1016/j.jallcom.2019.152963
Google Scholar
[28]
W. Xiao, W. Zhou, T. Feng, Y. Zhang, H. Liu, L. Tian, Simple synthesis of molybdenum disulfide/reduced graphene oxide composite hollow microspheres as supercapacitor electrode material, Materials. 9 (2016) 783.
DOI: 10.3390/ma9090783
Google Scholar
[29]
P. Salarizadeh, M.B. Askari, M. Seifi, S.M. Rozati, S.S. Eisazadeh, Pristine NiCo2O4 nanorods loaded rGO electrode as a remarkable electrode material for asymmetric supercapacitors, Mat. Sci. Semicon. Proc. 114 (2020) 105078.
DOI: 10.1016/j.mssp.2020.105078
Google Scholar
[30]
A. Verma, R.B. Choudhary, Influence of CdS nanorods on the optoelectronic properties of 2-dimensional rGO decorated polyindole matrix, Mat. Sci. Semicon. Proc. 110 (2020) 104948.
DOI: 10.1016/j.mssp.2020.104948
Google Scholar
[31]
M. Majumder, R.B. Choudhary, S.P. Koiry, A.K. Thakur, U. Kumar, Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications, Electrochim. Acta. 248 (2017) 98-111.
DOI: 10.1016/j.electacta.2017.07.107
Google Scholar
[32]
A. Jorio, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene related systems, Weinheim, Wiley-VCH, (2011).
DOI: 10.1002/9783527632695
Google Scholar
[33]
R. Dai, J. Chang, Y. Li, S. Shi, H. Li, Z. Yang, R. Ding, M. Yang, Performance enhancement of passively Q-switch Nd: YO4 laser using graphene-molybdenum disulphide heterojunction as a saturable absorber, Opt. Laser. Technol. 117 (2019) 265-271.
DOI: 10.1016/j.optlastec.2019.04.042
Google Scholar
[34]
Q. Wang, L. Yang, F. Jia, Y. Li, S. Song, Removal of Cd (II) from water by using nano-scale molybdenum disulphide sheets as adsorbents, J. Mol. Liq. 263 (2018) 526-533.
DOI: 10.1016/j.molliq.2018.04.149
Google Scholar
[35]
K.T. Tu, C.K. Chung, Enhancement of surface raman spectroscopy performance by silver nanoparticels on resin nanorods arrays from anodic aluminum oxide template, J. Electrochem. Soc. 164 (2017) B3081-B3086.
DOI: 10.1149/2.0121705jes
Google Scholar
[36]
N.A. Kumar, M.A. Dar, R. Gul, J.B. Baek, Graphene and molybdenum disulfide hybrids: synthesis and applications, Mater. Today. 18 (2015) 286-298.
DOI: 10.1016/j.mattod.2015.01.016
Google Scholar
[37]
Z. Wu, L. Xie, Y. Xiao, D. Wang, Silver wrapped MoS2 hybrid electrode materials for high performance supercapacitor, J. Alloys Compd. 708 (2017) 763-768.
DOI: 10.1016/j.jallcom.2017.03.048
Google Scholar
[38]
S. Mao, K. Yu, S. Cui, Z. Bo, G. Lu, J. Chen, A new reducing agent to prepare single layer, high-quality reduced graphene oxide for device applications, Nanoscale. 3 (2011) 2849-2853.
DOI: 10.1039/c1nr10270b
Google Scholar
[39]
Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Green preparation of reduced graphene oxide for sensing and energy storage applications, Sci. Rep. 4 (2014) 4684.
DOI: 10.1038/srep04684
Google Scholar
[40]
S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci. 4 (2011) 1855-1865.
DOI: 10.1039/c1ee01039e
Google Scholar