[1]
Beyer C, Figueroa D. Design and Analysis of Lattice Structures for Additive Manufacturing[J]. Journal of Manufacturing Science and Engineering, 2016, 138(12): 121014.
DOI: 10.1115/1.4033957
Google Scholar
[2]
Xiong Z H, Liu S L, Li S F, et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy[J]. Materials Science and Engineering: A, 2019, 740-741: 148-156.
DOI: 10.1016/j.msea.2018.10.083
Google Scholar
[3]
Cunningham R Z, Cang; Parab, Niranjan. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging[J]. Science, 2019, 363(6429): 849-852.
DOI: 10.1126/science.aav4687
Google Scholar
[4]
Galy C, Le Guen E, Lacoste E, et al. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences[J]. Additive Manufacturing, 2018, 22: 165-175.
DOI: 10.1016/j.addma.2018.05.005
Google Scholar
[5]
Kouraytem N, Chiang P-J, Jiang R, et al. Solidification crack propagation and morphology dependence on processing parameters in AA6061 from ultra-high-speed x-ray visualization[J]. Additive Manufacturing, 2021, 42: 101959.
DOI: 10.1016/j.addma.2021.101959
Google Scholar
[6]
Wang J, Liu Z, Bai S, et al. Microstructure evolution and mechanical properties of the electron-beam welded joints of cast Al–Cu–Mg–Ag alloy[J]. Materials Science and Engineering: A, 2021, 801: 140363.
DOI: 10.1016/j.msea.2020.140363
Google Scholar
[7]
Babu A P, Huang A, Birbilis N. On the heat treatment and mechanical properties of a high solute Al–Zn–Mg alloy processed through laser powder bed fusion process[J]. Materials Science and Engineering: A, 2021, 807: 140857.
DOI: 10.1016/j.msea.2021.140857
Google Scholar
[8]
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.
DOI: 10.1038/nature23894
Google Scholar
[9]
Andreau O, Koutiri I, Peyre P, et al. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting[J]. J Mater Process Technol, 2019, 264: 21-31.
DOI: 10.1016/j.jmatprotec.2018.08.049
Google Scholar
[10]
Scime L, Beuth J. Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 2019, 29: 100830.
DOI: 10.1016/j.addma.2019.100830
Google Scholar
[11]
Abolhasani, Seyedkashi, Kang, et al. Analysis of Melt-Pool Behaviors during Selective Laser Melting of AISI 304 Stainless-Steel Composites[J]. Metals, 2019, 9(8): 876.
DOI: 10.3390/met9080876
Google Scholar
[12]
Wu Y-C, San C-H, Chang C-H, et al. Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation[J]. J Mater Process Technol, 2018, 254: 72-78.
DOI: 10.1016/j.jmatprotec.2017.11.032
Google Scholar
[13]
Hooper P A. Melt pool temperature and cooling rates in laser powder bed fusion[J]. Additive Manufacturing, 2018, 22: 548-559.
DOI: 10.1016/j.addma.2018.05.032
Google Scholar
[14]
Furumoto T, Egashira K, Munekage K, et al. Experimental investigation of melt pool behaviour during selective laser melting by high speed imaging[J]. CIRP Annals, 2018, 67(1): 253-256.
DOI: 10.1016/j.cirp.2018.04.097
Google Scholar
[15]
Wang T, Wang Y, Chen C, Zhu H, Relationships between the characteristics of porosity, melt pool and process parameters in laser powder bed fusion Al-Zn alloy, Journal of Manufacturing Processes 68 (2021) 1236-1244.
DOI: 10.1016/j.jmapro.2021.06.027
Google Scholar