[1]
I. Sulaeva, U. Henniges, T. Rosenau and A. Potthast, Bacterial cellulose as a material for wound treatment: Properties and modifications. A review, Biotechnol. Adv. 33 (2015) 1547–1571.
DOI: 10.1016/j.biotechadv.2015.07.009
Google Scholar
[2]
M. Ul-Islam, T. Khan and J. K. Park, Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification, Carbohydr. Polym. 88 (2012) 596–603.
DOI: 10.1016/j.carbpol.2012.01.006
Google Scholar
[3]
R. Pliego-Arreaga, C. Regalado, A. Amaro-Reyes and B. E. García-Almendárez, Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium, Mexican Journal of Chemical Engineering. 12 (2013) 505–511.
Google Scholar
[4]
G. Bozdağ, O. Pinar, O. Gündüz and D. Kazan, Valorization of pea pod, celery root peel, and mixed-vegetable peel as a feedstock for biocellulose production from Komagataeibacter hansenii DSM 5602, Biomass Conv. Bioref. (2021).
DOI: 10.1007/s13399-021-01643-2
Google Scholar
[5]
L. Ogrizek, J. Lamovšek, F. Čuš, M. Leskovšek and M. Gorjanc, Properties of bacterial cellulose produced using white and red grape bagasse as a nutrient source, Processes. 9 (2021) 1088.
DOI: 10.3390/pr9071088
Google Scholar
[6]
R.T.A. Machado et al., Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production,, Ind. Crops Prod. 122 (2018) 637–646.
DOI: 10.1016/j.indcrop.2018.06.048
Google Scholar
[7]
N. Qiao, X. Fan, X. Zhang, Y. Shi, L. Wang and D. Yu, Soybean oil refinery effluent treatment and its utilization for bacterial cellulose production by Gluconacetobacter xylinus,Food Hydrocoll. 97 (2019) 105185.
DOI: 10.1016/j.foodhyd.2019.105185
Google Scholar
[8]
M. Zeng, A. Laromaine and A. Roig, Bacterial cellulose films: Influence of bacterial strain and drying route on film properties, Cellulose. 21 (2014) 4455–4469.
DOI: 10.1007/s10570-014-0408-y
Google Scholar
[9]
M. Ul-Islam, W. A. Khattak, M. Kang, S. M. Kim, T. Khan and J. K. Park, Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose, Cellulose, 20 (2013) 253–263.
DOI: 10.1007/s10570-012-9799-9
Google Scholar
[10]
W. Tang, S. Jia, Y. Jia and H. Yang, The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane, World J. Microbiol. Biotechnol. 26 (2010) 125–131.
DOI: 10.1007/s11274-009-0151-y
Google Scholar
[11]
M.A.K.M. Zahari, S.S.S. Abdullah, A.M. Roslan, H. Ariffin, Y. Shirai and M.A. Hassan, Efficient utilization of oil palm frond for bio-based products and biorefinery, J. Clean. Prod. 65 (2014) 252–260.
DOI: 10.1016/j.jclepro.2013.10.007
Google Scholar
[12]
M.A.K.M. Zahari, M.R. Zakaria, H. Ariffin, M.N. Mokhtar, J. Salihon, Y. Shirai and M.A. Hassan, Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products, Bioresour. Technol. 110 (2012) 566–571.
DOI: 10.1016/j.biortech.2012.01.119
Google Scholar
[13]
S.N.N.S. Azmi, S.N.N.F. M. Fabli, F. A. F. Aris, Z. Samsu, A. S. F. M. Asnawi, Y. M. Yusof, H. Ariffin and S. S. S. Abdullah, Fresh oil palm frond juice as a novel and alternative fermentation medium for bacterial cellulose production, Mater. Today Proc. 42 (2019) 101–106.
DOI: 10.1016/j.matpr.2020.10.220
Google Scholar
[14]
N.N.I. Supian, J. Zakaria, K.N.M. Amin, S. Mohamad and S.F.S. Mohamad, Effect of fermentation period on bacterial cellulose production from oil palm frond (OPF) juice, IOP Conf. Ser. Mater. Sci. Eng. 1092 (2021) 012048.
DOI: 10.1088/1757-899x/1092/1/012048
Google Scholar