Enhancement of Fermentable Sugars Obtained from Amorphophallus Spp. Tuber for Bioethanol Production by Optimizing Temperature and Pretreatment Concentration

Article Preview

Abstract:

Biofuels have been regaining popularity due to the increasing price of non-renewable fuels and the higher carbon dioxide emissions. Biofuels are manufactured from plant products and are mainly composed of lignocellulose and starch materials. This investigation aims to produce increased fermentable sugars for enhanced bioethanol production from tubers procured from northern Thailand. Varying concentrations of H2SO4 is used to pretreat the tubers. Before hydrolyzing with cellulase enzymes, the tubers were chopped into small pieces (1-2 cm), dried in a solar oven, powdered. The obtained results confirmed that the fermentable/ reducing sugar content of Amorphophallus spp. (suweg) tuber increased from 2.6 g/L to 19.01 g/L after enzymatic hydrolysis. The enzymes act as an excellent way to speed up the hydrolysis process. The theoretical potential of bioethanol production was calculated under ideal conditions, with the highest bioethanol concentration obtained is 9.69 ± 0.12 g/L at 0.4 % H2SO4 (pretreatment conc.) and 75 °C. The enhanced fermentable sugars obtained from starchy tubers may be utilized for bioethanol production to overcome depleting fossil fuels.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1056)

Pages:

185-190

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Saengsawang, P. Bhuyar, N. Manmai, V.K. Ponnusamy, R. Ramaraj, & Y. Unpaprom. (2020). The optimization of oil extraction from macroalgae, Rhizoclonium sp. by chemical methods for efficient conversion into biodiesel. Fuel, 274, 117841.

DOI: 10.1016/j.fuel.2020.117841

Google Scholar

[2] P. Bhuyar, M.M. Yusoff, M.H.A. Rahim, S. Sundararaju, G. P. Maniam, & N. Govindan. (2021). Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella sp. Journal of Microbiology, Biotechnology and Food Sciences, 671-674.

DOI: 10.15414/jmbfs.2020.9.4.671-674

Google Scholar

[3] K. Whangchai, V. Souvannasouk, P. Bhuyar, R. Ramaraj, & Y. Unpaprom. (2021). Biomass generation and biodiesel production from macroalgae grown in the irrigation canal wastewater. Water Science and Technology. 2021195.

DOI: 10.2166/wst.2021.195

Google Scholar

[4] R. Ramaraj, P. Bhuyar, K. Intarod, N. Sameechaem, & Y. Unpaprom. (2021). Stimulation of natural enzymes for germination of mimosa weed seeds to enhanced bioethanol production. 3 Biotech, 11(6), 1-9.

DOI: 10.1007/s13205-021-02859-9

Google Scholar

[5] P. Bhuyar, M.H.A. Rahim, M.M. Yusoff, G. P. Maniam, & N. Govindan. (2019). A selective microalgae strain for biodiesel production in relation to higher lipid profile. Maejo International Journal of Energy and Environmental Communication, 1(1), 8-14.

DOI: 10.54279/mijeec.v1i1.244895

Google Scholar

[6] S. Jayakumar, P. Bhuyar, A. Pugazhendhi, M.H.A. Rahim, G.P. Maniam, & N. Govindan. (2021). Effects of light intensity and nutrients on the lipid content of marine microalga (diatom) Amphiprora sp. for promising biodiesel production. Science of the Total Environment, 768, 145471.

DOI: 10.1016/j.scitotenv.2021.145471

Google Scholar

[7] K. Whangchai, W. Inta, Y. Unpaprom, P. Bhuyar, D. Adoonsook & R. Ramaraj. (2021). Comparative analysis of fresh and dry free-floating aquatic plant Pistia stratiotes via chemical pretreatment for second-generation (2G) bioethanol production. Bioresource Technology Reports, 14, 100651.

DOI: 10.1016/j.biteb.2021.100651

Google Scholar

[8] M.N.F. Abd Malek, L. Pushparaja, N.M. Hussin, N.H. Embong, P. Bhuyar, M. H. A. Rahim & G. P. Maniam. (2021). Exploration of efficiency of nano calcium oxide (CaO) as catalyst for enhancement of biodiesel production. Journal of microbiology, biotechnology and food sciences, e3935-e3935.

DOI: 10.15414/jmbfs.3935

Google Scholar

[9] P. Bhuyar, M. Trejo, N. Dussadee, Y. Unpaprom, R. Ramaraj & K. Whangchai. (2021). Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Science and Technology. 2021194.

DOI: 10.2166/wst.2021.194

Google Scholar

[10] P. Bhuyar, S. Sundararaju, M.H.A. Rahim, G.P. Maniam, & N. Govindan. (2021). Enhanced productivity of lipid extraction by urea stress conditions on marine microalgae Coelastrum sp. for improved biodiesel production. Bioresource Technology Reports, 15, 100696.

DOI: 10.1016/j.biteb.2021.100696

Google Scholar

[11] M. Trejo, P. Bhuyar, Y. Unpaprom, N. Dussadee & R. Ramaraj. (2021). Advancement of fermentable sugars from fresh elephant ear plant weed for efficient bioethanol production. Environment, Development and Sustainability, 1-11.

DOI: 10.1007/s10668-021-01753-x

Google Scholar

[12] P. Bhuyar, M. Y. Shen, M. Trejo, Y. Unpaprom, & R. Ramaraj. (2021). Improvement of fermentable sugar for enhanced bioethanol production from Amorphophallus spp. tuber obtained from northern Thailand. Environment, Development and Sustainability, 1-12.

DOI: 10.1007/s10668-021-01786-2

Google Scholar

[13] A. Buleon, P. Colonna, V. Planchot, & S. Ball. (1998). Starch granules: structure and biosynthesis. International journal of biological macromolecules, 23(2), 85-112.

DOI: 10.1016/s0141-8130(98)00040-3

Google Scholar

[14] K. Kusmiyati. (2014). Ethanol Production from Non-Food Tubers of Iles-iles (Amorphophallus campanulatus) by Using Separated Hydrolysis and Fermentation. Bulletin of Chemical Reaction Engineering & Catalysis, 9(2), 93.

DOI: 10.9767/bcrec.9.2.6014.93-99

Google Scholar

[15] A.D. Chaudhari & S.P. Salve. (2014). A review of solar dryer technologies. International Journal of Research in Advent Technology, 2(2), 218-232.

Google Scholar

[16] J. Satarn, W. Lamamorphanth & K. Kamwilaisak. (2014). Acid hydrolysis from corn stover for reducing sugar. In Advanced Materials Research (Vol. 931, pp.1608-1613).

DOI: 10.4028/www.scientific.net/amr.931-932.1608

Google Scholar

[17] N.S. Pooja & G. Padmaja. (2014). Pretreatment techniques to enhance the enzymatic degradability of agricultural and processing residues of cassava. Journal of Microbiology and Biotechnology Research, 4(1), 57-67.

Google Scholar

[18] G.S. Aruwajoye, F.D. Faloye & E.G. Kana. (2017). Soaking assisted thermal pretreatment of cassava peels wastes for fermentable sugar production: Process modelling and optimization. Energy Conversion and Management, 150, 558-566.

DOI: 10.1016/j.enconman.2017.08.046

Google Scholar

[19] R. Daneshpour & M. Mehrpooya. (2018). Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production. Energy Conversion and Management, 176, 274-286.

DOI: 10.1016/j.enconman.2018.09.033

Google Scholar

[20] M. Dubis. (1962). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350-356.

Google Scholar

[21] G.L. Miller. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.

DOI: 10.1021/ac60147a030

Google Scholar

[22] T. Srinorakutara, L. Kaewvimol & L.A. Saengow. (2006). Approach of cassava waste pretreatments for fuel ethanol production in Thailand. J. Sci. Res. Chula. Univ, 31(1), 77-84.

Google Scholar

[23] D. Mikulski & G. Kłosowski. (2018). Efficiency of dilute sulfuric acid pretreatment of distillery stillage in the production of cellulosic ethanol. Bioresource technology, 268, 424-433.

DOI: 10.1016/j.biortech.2018.08.005

Google Scholar

[24] U. Rattanachomsri, S. Tanapongpipat, L. Eurwilaichitr & V. Champreda. (2009). Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. Journal of Bioscience and Bioengineering, 107(5), 488-493.

DOI: 10.1016/j.jbiosc.2008.12.024

Google Scholar

[25] G. Izmirlioglu & A. Demirci. (2012). Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Applied Sciences, 2(4), 738-753.

DOI: 10.3390/app2040738

Google Scholar

[26] S. Behera, R. Arora, N. Nandhagopal & S. Kumar. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and sustainable energy reviews, 36, 91-106.

DOI: 10.1016/j.rser.2014.04.047

Google Scholar

[27] B. Zhang, S. Dhital & M.J. Gidley. (2015). Densely packed matrices as rate determining features in starch hydrolysis. Trends in Food Science & Technology, 43(1), 18-31.

DOI: 10.1016/j.tifs.2015.01.004

Google Scholar

[28] P. Bhuyar, S. Sathyavathi, R.K. Math, G.P. Maniam & N. Govindan. (2020). Production of bioethanol from starchy tuber (Amorphophallus commutatus) and antimicrobial activity study of its extracts. African Journal of Biological Sciences, 2(2), 70-76.

DOI: 10.33472/afjbs.2.2.2020.70-76

Google Scholar

[29] K. Liu, Y. Zu, C. Chi, B. Gu, L. Chen & X. Li. (2018). Modulation of the digestibility and multi-scale structure of cassava starch by controlling the cassava growth period. International journal of biological macromolecules, 120, 346-353.

DOI: 10.1016/j.ijbiomac.2018.07.184

Google Scholar

[30] M. Zhang, L. Xie, Z. Yin, S.K. Khanal & Q. Zhou. (2016). Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresource technology, 215, 50-62.

DOI: 10.1016/j.biortech.2016.04.026

Google Scholar