[1]
B. Saengsawang, P. Bhuyar, N. Manmai, V.K. Ponnusamy, R. Ramaraj, & Y. Unpaprom. (2020). The optimization of oil extraction from macroalgae, Rhizoclonium sp. by chemical methods for efficient conversion into biodiesel. Fuel, 274, 117841.
DOI: 10.1016/j.fuel.2020.117841
Google Scholar
[2]
P. Bhuyar, M.M. Yusoff, M.H.A. Rahim, S. Sundararaju, G. P. Maniam, & N. Govindan. (2021). Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella sp. Journal of Microbiology, Biotechnology and Food Sciences, 671-674.
DOI: 10.15414/jmbfs.2020.9.4.671-674
Google Scholar
[3]
K. Whangchai, V. Souvannasouk, P. Bhuyar, R. Ramaraj, & Y. Unpaprom. (2021). Biomass generation and biodiesel production from macroalgae grown in the irrigation canal wastewater. Water Science and Technology. 2021195.
DOI: 10.2166/wst.2021.195
Google Scholar
[4]
R. Ramaraj, P. Bhuyar, K. Intarod, N. Sameechaem, & Y. Unpaprom. (2021). Stimulation of natural enzymes for germination of mimosa weed seeds to enhanced bioethanol production. 3 Biotech, 11(6), 1-9.
DOI: 10.1007/s13205-021-02859-9
Google Scholar
[5]
P. Bhuyar, M.H.A. Rahim, M.M. Yusoff, G. P. Maniam, & N. Govindan. (2019). A selective microalgae strain for biodiesel production in relation to higher lipid profile. Maejo International Journal of Energy and Environmental Communication, 1(1), 8-14.
DOI: 10.54279/mijeec.v1i1.244895
Google Scholar
[6]
S. Jayakumar, P. Bhuyar, A. Pugazhendhi, M.H.A. Rahim, G.P. Maniam, & N. Govindan. (2021). Effects of light intensity and nutrients on the lipid content of marine microalga (diatom) Amphiprora sp. for promising biodiesel production. Science of the Total Environment, 768, 145471.
DOI: 10.1016/j.scitotenv.2021.145471
Google Scholar
[7]
K. Whangchai, W. Inta, Y. Unpaprom, P. Bhuyar, D. Adoonsook & R. Ramaraj. (2021). Comparative analysis of fresh and dry free-floating aquatic plant Pistia stratiotes via chemical pretreatment for second-generation (2G) bioethanol production. Bioresource Technology Reports, 14, 100651.
DOI: 10.1016/j.biteb.2021.100651
Google Scholar
[8]
M.N.F. Abd Malek, L. Pushparaja, N.M. Hussin, N.H. Embong, P. Bhuyar, M. H. A. Rahim & G. P. Maniam. (2021). Exploration of efficiency of nano calcium oxide (CaO) as catalyst for enhancement of biodiesel production. Journal of microbiology, biotechnology and food sciences, e3935-e3935.
DOI: 10.15414/jmbfs.3935
Google Scholar
[9]
P. Bhuyar, M. Trejo, N. Dussadee, Y. Unpaprom, R. Ramaraj & K. Whangchai. (2021). Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Science and Technology. 2021194.
DOI: 10.2166/wst.2021.194
Google Scholar
[10]
P. Bhuyar, S. Sundararaju, M.H.A. Rahim, G.P. Maniam, & N. Govindan. (2021). Enhanced productivity of lipid extraction by urea stress conditions on marine microalgae Coelastrum sp. for improved biodiesel production. Bioresource Technology Reports, 15, 100696.
DOI: 10.1016/j.biteb.2021.100696
Google Scholar
[11]
M. Trejo, P. Bhuyar, Y. Unpaprom, N. Dussadee & R. Ramaraj. (2021). Advancement of fermentable sugars from fresh elephant ear plant weed for efficient bioethanol production. Environment, Development and Sustainability, 1-11.
DOI: 10.1007/s10668-021-01753-x
Google Scholar
[12]
P. Bhuyar, M. Y. Shen, M. Trejo, Y. Unpaprom, & R. Ramaraj. (2021). Improvement of fermentable sugar for enhanced bioethanol production from Amorphophallus spp. tuber obtained from northern Thailand. Environment, Development and Sustainability, 1-12.
DOI: 10.1007/s10668-021-01786-2
Google Scholar
[13]
A. Buleon, P. Colonna, V. Planchot, & S. Ball. (1998). Starch granules: structure and biosynthesis. International journal of biological macromolecules, 23(2), 85-112.
DOI: 10.1016/s0141-8130(98)00040-3
Google Scholar
[14]
K. Kusmiyati. (2014). Ethanol Production from Non-Food Tubers of Iles-iles (Amorphophallus campanulatus) by Using Separated Hydrolysis and Fermentation. Bulletin of Chemical Reaction Engineering & Catalysis, 9(2), 93.
DOI: 10.9767/bcrec.9.2.6014.93-99
Google Scholar
[15]
A.D. Chaudhari & S.P. Salve. (2014). A review of solar dryer technologies. International Journal of Research in Advent Technology, 2(2), 218-232.
Google Scholar
[16]
J. Satarn, W. Lamamorphanth & K. Kamwilaisak. (2014). Acid hydrolysis from corn stover for reducing sugar. In Advanced Materials Research (Vol. 931, pp.1608-1613).
DOI: 10.4028/www.scientific.net/amr.931-932.1608
Google Scholar
[17]
N.S. Pooja & G. Padmaja. (2014). Pretreatment techniques to enhance the enzymatic degradability of agricultural and processing residues of cassava. Journal of Microbiology and Biotechnology Research, 4(1), 57-67.
Google Scholar
[18]
G.S. Aruwajoye, F.D. Faloye & E.G. Kana. (2017). Soaking assisted thermal pretreatment of cassava peels wastes for fermentable sugar production: Process modelling and optimization. Energy Conversion and Management, 150, 558-566.
DOI: 10.1016/j.enconman.2017.08.046
Google Scholar
[19]
R. Daneshpour & M. Mehrpooya. (2018). Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production. Energy Conversion and Management, 176, 274-286.
DOI: 10.1016/j.enconman.2018.09.033
Google Scholar
[20]
M. Dubis. (1962). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350-356.
Google Scholar
[21]
G.L. Miller. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
DOI: 10.1021/ac60147a030
Google Scholar
[22]
T. Srinorakutara, L. Kaewvimol & L.A. Saengow. (2006). Approach of cassava waste pretreatments for fuel ethanol production in Thailand. J. Sci. Res. Chula. Univ, 31(1), 77-84.
Google Scholar
[23]
D. Mikulski & G. Kłosowski. (2018). Efficiency of dilute sulfuric acid pretreatment of distillery stillage in the production of cellulosic ethanol. Bioresource technology, 268, 424-433.
DOI: 10.1016/j.biortech.2018.08.005
Google Scholar
[24]
U. Rattanachomsri, S. Tanapongpipat, L. Eurwilaichitr & V. Champreda. (2009). Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. Journal of Bioscience and Bioengineering, 107(5), 488-493.
DOI: 10.1016/j.jbiosc.2008.12.024
Google Scholar
[25]
G. Izmirlioglu & A. Demirci. (2012). Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Applied Sciences, 2(4), 738-753.
DOI: 10.3390/app2040738
Google Scholar
[26]
S. Behera, R. Arora, N. Nandhagopal & S. Kumar. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and sustainable energy reviews, 36, 91-106.
DOI: 10.1016/j.rser.2014.04.047
Google Scholar
[27]
B. Zhang, S. Dhital & M.J. Gidley. (2015). Densely packed matrices as rate determining features in starch hydrolysis. Trends in Food Science & Technology, 43(1), 18-31.
DOI: 10.1016/j.tifs.2015.01.004
Google Scholar
[28]
P. Bhuyar, S. Sathyavathi, R.K. Math, G.P. Maniam & N. Govindan. (2020). Production of bioethanol from starchy tuber (Amorphophallus commutatus) and antimicrobial activity study of its extracts. African Journal of Biological Sciences, 2(2), 70-76.
DOI: 10.33472/afjbs.2.2.2020.70-76
Google Scholar
[29]
K. Liu, Y. Zu, C. Chi, B. Gu, L. Chen & X. Li. (2018). Modulation of the digestibility and multi-scale structure of cassava starch by controlling the cassava growth period. International journal of biological macromolecules, 120, 346-353.
DOI: 10.1016/j.ijbiomac.2018.07.184
Google Scholar
[30]
M. Zhang, L. Xie, Z. Yin, S.K. Khanal & Q. Zhou. (2016). Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresource technology, 215, 50-62.
DOI: 10.1016/j.biortech.2016.04.026
Google Scholar