Concept of Elastocaloric Granular Material Made from SMA Wires in Bending

Article Preview

Abstract:

Shape memory alloys (SMAs) are promising materials for the creation of heating or cooling systems due to their elastocaloric character. The paper proposes a concept of elastocaloric “porous” SMA beam working in bending. The beam was made with superelastic nickel-titanium SMA wires of different diameters placed in a flexible tube. While water was flowing through the tube, bending was manually applied using 3D printed wavy profiles with portions of arcs with constant curvatures. Preliminary results showed an oscillation of the fluid temperature at the outlet of the flexible tube (containing the SMA wires) at the same frequency as the mechanical loading, validating therefore the concept of elastocaloric porous SMA beam operating in bending.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1058)

Pages:

135-140

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Jani, M. Leary, A. Subic and M.A. Gibson: A review of shape memory alloy research, applications and opportunities. Mater. Design Vol. 56 (2014), p.1078–113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[2] H. Hou, I. Takeuchi, M. Staruch and P. Finkel. Systems and methods for cooling using a composite elastocaloric device. U.S. Patent 2020096240A1 (2020).

Google Scholar

[3] D.J. Sharar and B.M. Hanrahan: Continuous bending-mode elastocaloric cooling/heating flow loop. U.S. Patent 2020088449A1 (2020).

Google Scholar

[4] M.G. Schroeder: Method for operating and elasto-caloric heat pump with variable pre-strain. U.S. Patent 2019323742A1 (2019).

Google Scholar

[5] M.G. Schroeder and M.A. Benedict: Elasto-caloric heat pump system. U.S. Patent 2019178536A1 (2019).

Google Scholar

[6] J. Tusek, K. Engelbrecht, D. Eriksen, S. Dall'Olio, J. Tusek and N. Pryds: A regenerative elastocaloric heat pump. Nat. Energy Vol. 1 (2016), 16134.

DOI: 10.1038/nenergy.2016.134

Google Scholar

[7] F. Bruederlin, H. Ossmer, F. Wendler, S. Miyazaki and M. Kohl: SMA foil-based elastocaloric cooling: from material behavior to device engineering. J. Phys. D. App. Phys. Vol. 50 (2017), 424003.

DOI: 10.1088/1361-6463/aa87a2

Google Scholar

[8] H. Ossmer, F. Wendler, M. Gueltig, F. Lambrecht, S. Miyazaki and M. Kohl M: Energy-efficient miniature-scale heat pumping based on shape memory alloys. Smart Mater. Struct. Vol. 25 (2017), 085037.

DOI: 10.1088/0964-1726/25/8/085037

Google Scholar

[9] H. Ossmer, S. Miyazaki and M. Kohl, in: 2015 Transducers – 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). Anchorage, AK, USA, June 21-25, 2015, edited by IEEE: Elastocaloric heat pumping using a shape memory alloy foil device, p.726–729, IEEE, New York, USA (2015).

DOI: 10.1109/transducers.2015.7181026

Google Scholar

[10] M. Schmidt, A. Schutze and S. Seelecke: Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int. J. Refrig. Vol. 54 (2015), p.88–97.

DOI: 10.1016/j.ijrefrig.2015.03.001

Google Scholar

[11] N. Michaelis, F. Welsch, S.M. Kirsch, M. Schmidt, S. Seelecke and A. Schutze: Experimental parameter identification for elastocaloric air cooling. Int. J. Refrig. Vol. 100 (20119), p.167–174.

DOI: 10.1016/j.ijrefrig.2019.01.006

Google Scholar

[12] R. Snodgrass and D. Erickson: A multistage elastocaloric refrigerator and heat pump with 28 K temperature span. Sci. Rep. Vol. 9 (2019), 18532.

DOI: 10.1038/s41598-019-54411-8

Google Scholar

[13] H. Hou, J. Cui, S. Qian, D. Catalini, Y. Hwang, R. Radermacher and I. Takeuchi: Overcoming fatigue through compression for advanced elastocaloric cooling. MRS Bull. Vol. 43 (2018). p.285–290.

DOI: 10.1557/mrs.2018.70

Google Scholar

[14] A. Bansiddhi, T.D. Sargeant, S.I. Stupp and D.C. Dunand: Porous NiTi for bone implants: A review. Acta Biomater. Vol. 4 (2008), p.773–782.

DOI: 10.1016/j.actbio.2008.02.009

Google Scholar

[15] X.J. Wang, S.Q. Xu, S.W. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt and Y.M. Xie: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials Vol. 83 (2016), p.127–141.

DOI: 10.1016/j.biomaterials.2016.01.012

Google Scholar

[16] M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber and H.F. Hamilton: Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. Vol 83 (2016), p.630–663.

DOI: 10.1016/j.pmatsci.2016.08.001

Google Scholar

[17] P. Kabirifar, A. Zerovnik, Z. Ahcin, L. Porenta, M. Brojan and J. Tusek: Elastocaloric cooling: State-of-the-art and future challenges in designing regenerative elastocaloric devices. Strojniski Vestnik – J. Mech. Eng. Vol. 65 (2019), p.615–630.

DOI: 10.5545/sv-jme.2019.6369

Google Scholar

[18] S.X. Qian, A. Alabdulkarem, J.Z. Ling, J. Muehlbauer, Y.H. Hwang, R. Radermacher and I. Takeuchi. Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs. Int. J. Refrig. Vol. 57 (2015), p.62–76.

DOI: 10.1016/j.ijrefrig.2015.04.012

Google Scholar

[19] S.X. Qian, L.F. Yuan, J.L. Yu and G. Yan: Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection. Energy Vol. 141 (2017), p.744–756.

DOI: 10.1016/j.energy.2017.09.116

Google Scholar

[20] J.M. Tan, Y. Wang, S.J. Xu, H.C. Liu and S.X. Qian: Thermodynamic cycle analysis of heat driven elastocaloric cooling system. Energy Vol. 197 (2020), 117261.

DOI: 10.1016/j.energy.2020.117261

Google Scholar

[21] D. Luo, Y.S. Feng and P. Verma: Modeling and analysis of an integrated solid state elastocaloric heat pumping system. Energy Vol. 130 (2017), p.500–514.

DOI: 10.1016/j.energy.2017.05.008

Google Scholar

[22] P. Jongchansitto, T. Yachai, I. Preechawuttipong, R. Boufayed and X. Balandraud: Concept of mechanocaloric granular material made from shape memory alloy. Energy Vol. 219 (2021), 119656.

DOI: 10.1016/j.energy.2020.119656

Google Scholar

[23] Fort Wayne Metals (2021) https://www.fwmetals.com/materials/nitinol/superelastic-nitinol/.

Google Scholar

[24] A. Paiva, M.A. Savi, A.M.B. Braga and P.M.C.L. Pacheco: A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int. J. Solids Struct. Vol. 42 (2005), p.3439–3457.

DOI: 10.1016/j.ijsolstr.2004.11.006

Google Scholar