[1]
J.M. Jani, M. Leary, A. Subic and M.A. Gibson: A review of shape memory alloy research, applications and opportunities. Mater. Design Vol. 56 (2014), p.1078–113.
DOI: 10.1016/j.matdes.2013.11.084
Google Scholar
[2]
H. Hou, I. Takeuchi, M. Staruch and P. Finkel. Systems and methods for cooling using a composite elastocaloric device. U.S. Patent 2020096240A1 (2020).
Google Scholar
[3]
D.J. Sharar and B.M. Hanrahan: Continuous bending-mode elastocaloric cooling/heating flow loop. U.S. Patent 2020088449A1 (2020).
Google Scholar
[4]
M.G. Schroeder: Method for operating and elasto-caloric heat pump with variable pre-strain. U.S. Patent 2019323742A1 (2019).
Google Scholar
[5]
M.G. Schroeder and M.A. Benedict: Elasto-caloric heat pump system. U.S. Patent 2019178536A1 (2019).
Google Scholar
[6]
J. Tusek, K. Engelbrecht, D. Eriksen, S. Dall'Olio, J. Tusek and N. Pryds: A regenerative elastocaloric heat pump. Nat. Energy Vol. 1 (2016), 16134.
DOI: 10.1038/nenergy.2016.134
Google Scholar
[7]
F. Bruederlin, H. Ossmer, F. Wendler, S. Miyazaki and M. Kohl: SMA foil-based elastocaloric cooling: from material behavior to device engineering. J. Phys. D. App. Phys. Vol. 50 (2017), 424003.
DOI: 10.1088/1361-6463/aa87a2
Google Scholar
[8]
H. Ossmer, F. Wendler, M. Gueltig, F. Lambrecht, S. Miyazaki and M. Kohl M: Energy-efficient miniature-scale heat pumping based on shape memory alloys. Smart Mater. Struct. Vol. 25 (2017), 085037.
DOI: 10.1088/0964-1726/25/8/085037
Google Scholar
[9]
H. Ossmer, S. Miyazaki and M. Kohl, in: 2015 Transducers – 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). Anchorage, AK, USA, June 21-25, 2015, edited by IEEE: Elastocaloric heat pumping using a shape memory alloy foil device, p.726–729, IEEE, New York, USA (2015).
DOI: 10.1109/transducers.2015.7181026
Google Scholar
[10]
M. Schmidt, A. Schutze and S. Seelecke: Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int. J. Refrig. Vol. 54 (2015), p.88–97.
DOI: 10.1016/j.ijrefrig.2015.03.001
Google Scholar
[11]
N. Michaelis, F. Welsch, S.M. Kirsch, M. Schmidt, S. Seelecke and A. Schutze: Experimental parameter identification for elastocaloric air cooling. Int. J. Refrig. Vol. 100 (20119), p.167–174.
DOI: 10.1016/j.ijrefrig.2019.01.006
Google Scholar
[12]
R. Snodgrass and D. Erickson: A multistage elastocaloric refrigerator and heat pump with 28 K temperature span. Sci. Rep. Vol. 9 (2019), 18532.
DOI: 10.1038/s41598-019-54411-8
Google Scholar
[13]
H. Hou, J. Cui, S. Qian, D. Catalini, Y. Hwang, R. Radermacher and I. Takeuchi: Overcoming fatigue through compression for advanced elastocaloric cooling. MRS Bull. Vol. 43 (2018). p.285–290.
DOI: 10.1557/mrs.2018.70
Google Scholar
[14]
A. Bansiddhi, T.D. Sargeant, S.I. Stupp and D.C. Dunand: Porous NiTi for bone implants: A review. Acta Biomater. Vol. 4 (2008), p.773–782.
DOI: 10.1016/j.actbio.2008.02.009
Google Scholar
[15]
X.J. Wang, S.Q. Xu, S.W. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt and Y.M. Xie: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials Vol. 83 (2016), p.127–141.
DOI: 10.1016/j.biomaterials.2016.01.012
Google Scholar
[16]
M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber and H.F. Hamilton: Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. Vol 83 (2016), p.630–663.
DOI: 10.1016/j.pmatsci.2016.08.001
Google Scholar
[17]
P. Kabirifar, A. Zerovnik, Z. Ahcin, L. Porenta, M. Brojan and J. Tusek: Elastocaloric cooling: State-of-the-art and future challenges in designing regenerative elastocaloric devices. Strojniski Vestnik – J. Mech. Eng. Vol. 65 (2019), p.615–630.
DOI: 10.5545/sv-jme.2019.6369
Google Scholar
[18]
S.X. Qian, A. Alabdulkarem, J.Z. Ling, J. Muehlbauer, Y.H. Hwang, R. Radermacher and I. Takeuchi. Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs. Int. J. Refrig. Vol. 57 (2015), p.62–76.
DOI: 10.1016/j.ijrefrig.2015.04.012
Google Scholar
[19]
S.X. Qian, L.F. Yuan, J.L. Yu and G. Yan: Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection. Energy Vol. 141 (2017), p.744–756.
DOI: 10.1016/j.energy.2017.09.116
Google Scholar
[20]
J.M. Tan, Y. Wang, S.J. Xu, H.C. Liu and S.X. Qian: Thermodynamic cycle analysis of heat driven elastocaloric cooling system. Energy Vol. 197 (2020), 117261.
DOI: 10.1016/j.energy.2020.117261
Google Scholar
[21]
D. Luo, Y.S. Feng and P. Verma: Modeling and analysis of an integrated solid state elastocaloric heat pumping system. Energy Vol. 130 (2017), p.500–514.
DOI: 10.1016/j.energy.2017.05.008
Google Scholar
[22]
P. Jongchansitto, T. Yachai, I. Preechawuttipong, R. Boufayed and X. Balandraud: Concept of mechanocaloric granular material made from shape memory alloy. Energy Vol. 219 (2021), 119656.
DOI: 10.1016/j.energy.2020.119656
Google Scholar
[23]
Fort Wayne Metals (2021) https://www.fwmetals.com/materials/nitinol/superelastic-nitinol/.
Google Scholar
[24]
A. Paiva, M.A. Savi, A.M.B. Braga and P.M.C.L. Pacheco: A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int. J. Solids Struct. Vol. 42 (2005), p.3439–3457.
DOI: 10.1016/j.ijsolstr.2004.11.006
Google Scholar