Influence of Cement on Concrete Mix Designs through Sustainability Indicators

Article Preview

Abstract:

Internationally, the most widely used concrete mix design methods are the American Concrete Institute, Department of Environment, Indian Standard, Fineness Modulus and Walker. These methods propose the dosage of materials from tables and graphs developed from multiple experiments and generalize the designs to achieve optimum strength, durability, and quality performance. However, sustainability does not contemplate the design, especially cement, which is responsible for CO2 emissions and the cost of concrete. The study analyzed the procedure and dosage of five methods for a 20 MPa strength concrete mix in the laboratory and applied them to beams and columns in a multi-family building using sustainability indicators. The results indicate that the IS method uses water efficiently, is more economical, and requires less cement, while the ACI method generates a positive environmental and social impact due to the efficient consumption of materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1058)

Pages:

107-111

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ahmed, S. Islam, S. Nazar and R. Khan: Arab. J. Sci. Eng. Vol. 41 (2016) p.1403–1412.

Google Scholar

[2] Neville A Properties of concrete (Pearson, New York 2011).

Google Scholar

[3] J. Tao, L. Tingwei and L. Xujian: Cem. Concr. Res. Vol. 36 (2006) pp.1399-1408.

Google Scholar

[4] S. Wani, T. Muntazari and N. Rafique: Chall. J. Concr. Res. Lett. Vol. 12 (2021) pp.20-29.

Google Scholar

[5] M. León and F. Ramírez: Rev. Ing. de Construcción Vol. 25 (2010) pp.215-240.

Google Scholar

[6] ACI 211.1 Standard for Selecting Proportions for Normal, Heavyweight, & Mass Concrete.

Google Scholar

[7] M. Nataraja and D. Lelin: Indian Concr. J. Vol. 84 (2010) pp.64-70.

Google Scholar

[8] H. Qasrawi: Adv. Civ. Eng. Vol. 2016 (2016) 1035946.

Google Scholar

[9] I. Ejiogu, P. Mamza, P. Nkeonye and A. Yaro: Pac. J. Sci. Technol. Vol. 19 (2018) pp.22-36.

Google Scholar

[10] R. Solis, E. Moreno and E. Arjona: Rev. Fac. Ing UCV Vol. 27 (2012) pp.43-50.

Google Scholar

[11] G. Taylor Materials in Construction: An Introduction (Routledge, London 2000).

Google Scholar

[12] T. Nwofor, S. Sule and D. Eme: Int. J. Sci. Eng. Res. Vol. 6 (2015).

Google Scholar

[13] M. Gambhir Concrete Technology (Tata McGraw Hill Education, New Delhi 2011).

Google Scholar

[14] IS:10262-2019 Indian Standard Concrete Mix Proportioning-Guidelines (Second Revision).

Google Scholar

[15] D. Abrams Design of concrete mixtures (Lewis Institute, Chicago 1919).

Google Scholar

[16] D. Ukala : J. Appl. Sci. Environ. Manag. Vol. 23 (2019).

Google Scholar

[17] S. Popovics Mag. Concr. Res. Vol.18 (1966) pp.131-140.

Google Scholar

[18] E. Rivva y E. Pasquel Tecnología del concreto (ACI-Capítulo Peruano, Lima 1999).

Google Scholar

[19] S. Walker and D. Bloem: ACI J. Proc. Vol. 57 (1966).

Google Scholar

[20] R. Santhosh and P. Shivananda: Int. J. Res. Appl. Sci. Eng. Technol. Vol. 5 (2017).

Google Scholar

[21] K. Lohote, R. Dumbre, S. Sagale and A. Unde: Int. J. Eng. Sci. Manag. Res. Vol. 7 (2017).

Google Scholar

[22] A. Chhachhia: J. Bui.Mat.Sci. Vol. 2 (2020) pp.30-33.

Google Scholar

[23] H. Kim, I. Kim, W. Yang, S. Moon and J. Lee: Sustainability Vol.13 (2021).

Google Scholar

[24] J. Park, S. Tae and T. Kim: Renew. Sust. Energ. Rev. Vol.16 (2012) p.2940–2946.

Google Scholar

[25] J. Opon and M. Henry: J. Clean. Prod. Vol.218 (2019) pp.718-737.

Google Scholar

[26] H. Campos, N. Klein and J. Marques Filho: J. Clean. Prod. Vol.265 (2020).

Google Scholar

[27] Revansiddappa et al: Int. J. Eng. Adv. Technol. Vol.7 (2020) pp.682-685.

Google Scholar

[28] Naciones Unidas La agenda 2030 y los objetivos de desarrollo sostenible (2018).

Google Scholar

[29] World Business Council for Sustainable Development Vision 2050: Time to transform (2021).

Google Scholar

[30] ASTM C33 / C33M-18 Standard Specification for Concrete Aggregates.

Google Scholar

[31] UNACEM Ficha Técnica: Cemento Sol (Unacem, Lima 2021).

Google Scholar

[32] Chema Hoja de Datos del Producto: Chema Plast (Chema Peru, Lima 2018).

Google Scholar

[33] ASTM C1602M-18 Specification for Mixing Water Used in Hydraulic Cement Concrete.

Google Scholar

[34] ASTM C136M-19 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.

Google Scholar

[35] ASTM C29M-17a Standard Test Method for Bulk Density and Voids in Aggregate.

Google Scholar

[36] ASTM C127-15 Standard Test Method for Relative Density & Absorption of Coarse Aggregate.

Google Scholar

[37] ASTM C128-15 Standard Test Method for Relative Density & Absorption of Fine Aggregate.

Google Scholar

[38] C. Cuadrado Constructivo Suplemento Técnico Edición 151(Lima: Constructivo, Lima 2021).

Google Scholar

[39] M. Ahmed, J. Mallick, S. AlQadhi and N. Kahla: Sustainability Vol.12 (2020).

Google Scholar