[1]
J. Fritz, E. B. Cooper, S. Gaudet, P. K. Sorger, and S. R. Manalis, Electronic detection of DNA by its intrinsic molecular charge,, PNAS, vol. 99, no. 22, p.14142–14146, Oct. (2002).
DOI: 10.1073/pnas.232276699
Google Scholar
[2]
A. Poghossian, A. Cherstvy, S. Ingebrandt, A. Offenhäusser, and M. J. Schöning, Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices,, Sensors and Actuators B: Chemical, vol. 111, p.470–480, Nov. (2005).
DOI: 10.1016/j.snb.2005.03.083
Google Scholar
[3]
N. Mojarad and M. Krishnan, Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap,, Nature Nanotechnology, vol. 7, p.448–452, Jun. (2012).
DOI: 10.1038/nnano.2012.99
Google Scholar
[4]
P. Xie, Q. Xiong, Y. Fang, Q. Qing, and C. M. Lieber, Local electrical potential detection of DNA by nanowire-nanopore sensors.,, Nature Nanotechnology, vol. 7, p.119–125, Jan. (2012).
DOI: 10.1038/nnano.2011.217
Google Scholar
[5]
Graf, M.; Lihter, M.; Altus, D.; Marion, S.; Radenovic, A. Transverse Detection of DNA Using a MoS2 Nanopore. Nano Lett. 2019, 19 (12), 9075−9083.
DOI: 10.1021/acs.nanolett.9b04180
Google Scholar
[6]
Heerema, S. J.; Vicarelli, L.; Pud, S.; Schouten, R. N.; Zandbergen, H. W.; Dekker, C. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore. ACS Nano 2018, 12 (3), 2623−2633.
DOI: 10.1021/acsnano.7b08635
Google Scholar
[7]
M. Puster, A. Balan, J. A. Rodríguez-Manzo, G. Danda, J.-H. Ahn, W. Parkin, and M. Drndić, Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection,, Small, vol. 11, no. 47, p.6309–6316, Oct. (2015).
DOI: 10.1002/smll.201502134
Google Scholar
[8]
X. Zhu, X. Li, C. Gu, Z. Ye, Z. Cao, X. Zhang, C. Jin, and Y. Liu, Monolithic Integration of Vertical Thin-Film Transistors in Nanopores for Charge Sensing of Single Biomolecules,, ACS Nano. 2021, 15, 9882-9889.
DOI: 10.1021/acsnano.1c01042
Google Scholar
[9]
Böhme, U.; Scheler, U. Effective Charge of Bovine Serum Albumin Determined by Electrophoresis NMR. Chem. Phys. Lett. 2007, 435 (4–6), 342–345.
DOI: 10.1016/j.cplett.2006.12.068
Google Scholar
[10]
Sze, S. M.; Ng, K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons, Inc., Hoboken, NJ, (2006).
Google Scholar
[11]
X. Zhu, L. Guo, S. Ni, X. Zhang, and Y. Liu, Transport-Induced Inversion of Screening Ionic Charges in Nanochannels,, The Journal of Physical Chemistry Letters, p.5235–5241, Dec. (2016).
DOI: 10.1021/acs.jpclett.6b02563
Google Scholar
[12]
Y. Liu, D. E. Huber, V. Tabard-Cossa, and R. W. Dutton, Descreening of field effect in electrically gated nanopores,, Appl. Phys. Lett., vol. 97, no. 14, p.143109–4, Oct. (2010).
DOI: 10.1063/1.3497276
Google Scholar
[13]
Y. Liu, J. Sauer, and R. W. Dutton, Effect of electrodiffusion current flow on electrostatic screening in aqueous pores,, Journal of Applied Physics, vol. 103, no. 8, p.084701, (2008).
DOI: 10.1063/1.2906327
Google Scholar