[1]
K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490(7419) (2012) 192-200.
DOI: 10.1038/nature11458
Google Scholar
[2]
E. McCann, M. Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys. 76(5) (2013) 056503.
DOI: 10.1088/0034-4885/76/5/056503
Google Scholar
[3]
H. Yan, Bilayer graphene: physics and application outlook in photonics, Nanophotonics-Berlin 4(2) (2015) 115-127.
DOI: 10.1515/nanoph-2014-0019
Google Scholar
[4]
V.L. Nguyen, D.L. Duong, S.H. Lee, J. Avila, G. Han, Y.-M. Kim, M.C. Asensio, S.-Y. Jeong, Y.H. Lee, Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation, Nat. Nanotechnol. (2020) 861–867.
DOI: 10.1038/s41565-020-0743-0
Google Scholar
[5]
M. Huang, P.V. Bakharev, Z.J. Wang, M. Biswal, Z. Yang, S. Jin, B. Wang, H.J. Park, Y.Q. Li, D.S. Qu, Y. Kwon, X.J. Chen, S.H. Lee, M.G. Willinger, W.J. Yoo, Z. Lee, R.S. Ruoff, Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil, Nat. Nanotechnol. 15(4) (2020) 289–295.
DOI: 10.1038/s41565-019-0622-8
Google Scholar
[6]
Z. Sun, Y.H. Hu, How Magical Is Magic-Angle Graphene?, Matter 2(5) (2020) 1106-1114.
DOI: 10.1016/j.matt.2020.03.010
Google Scholar
[7]
E.Y. Andrei, A.H. MacDonald, Graphene bilayers with a twist, Nat. Mater. 19(12) (2020) 1265-1275.
DOI: 10.1038/s41563-020-00840-0
Google Scholar
[8]
Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J.M. Park, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene, Nature (2020).
DOI: 10.1038/s41586-020-2260-6
Google Scholar
[9]
S. Yu, G. Jingyuan, W. Kenji, T. Takashi, F.Y. Andrea, Independent superconductors and correlated insulators in twisted bilayer graphene, Nat. Phys. (2020) 926–930.
DOI: 10.1038/s41567-020-0928-3
Google Scholar
[10]
L. Xiaoxue, W. Zhi, K. Watanabe, T. Taniguchi, V. Oskar, J.I.A. Li, Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening, Science (2021) 1261-1265.
DOI: 10.1126/science.abb8754
Google Scholar
[11]
C. Le, Y. Gui, Fabrication Strategies of Twisted Bilayer Graphenes and Their Unique Properties, Adv. Mater. (2021) 2004974.
DOI: 10.1002/adma.202004974
Google Scholar
[12]
Q. Li, H. Chou, J.-H. Zhong, J.-Y. Liu, A. Dolocan, J. Zhang, Y. Zhou, R.S. Ruoff, S. Chen, W. Cai, Growth of adlayer graphene on Cu studied by carbon isotope labeling, Nano Lett. 13(2) (2013) 486-490.
DOI: 10.1021/nl303879k
Google Scholar
[13]
P. Vinchon, X. Glad, G. Robert Bigras, R. Martel, L. Stafford, Preferential self-healing at grain boundaries in plasma-treated graphene, Nat. Mater. 20(1) (2021) 49-54.
DOI: 10.1038/s41563-020-0738-0
Google Scholar
[14]
J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices, Chem. Soc. Rev. 47(5) (2018) 1822-1873.
DOI: 10.1039/c6cs00915h
Google Scholar
[15]
U. Lee, Y. Han, S. Lee, J.S. Kim, Y.H. Lee, U.J. Kim, H. Son, Time Evolution Studies on Strain and Doping of Graphene Grown on a Copper Substrate Using Raman Spectroscopy, ACS Nano 14(1) (2020) 919-926.
DOI: 10.1021/acsnano.9b08205
Google Scholar
[16]
B.-W. Philipp, J.B. Oliver, Z. Patrick, A. Matteo, G. Luca, S.W. Robert, H. Stephan, Crystal orientation dependent oxidation modes at the buried graphene-Cu interface, Chem. Mater. (2020) 7766-7776.
DOI: 10.1021/acs.chemmater.0c02296
Google Scholar
[17]
A.C. Gadelha, D.A.A. Ohlberg, C. Rabelo, E.G.S. Neto, T.L. Vasconcelos, J.L. Campos, J.S. Lemos, V. Ornelas, D. Miranda, R. Nadas, F.C. Santana, K. Watanabe, T. Taniguchi, B. van Troeye, M. Lamparski, V. Meunier, V.-H. Nguyen, D. Paszko, J.-C. Charlier, L.C. Campos, L.G. Cançado, G. Medeiros-Ribeiro, A. Jorio, Localization of lattice dynamics in low-angle twisted bilayer graphene, Nature 590(7846) (2021) 405-409.
DOI: 10.1038/s41586-021-03252-5
Google Scholar
[18]
C. Shen, X. Yan, F. Qing, X. Niu, R. Stehle, S.S. Mao, W. Zhang, X. Li, Criteria for the growth of large-area adlayer-free monolayer graphene films by chemical vapor deposition, J. Materiomics 5(3) (2019) 463-470.
DOI: 10.1016/j.jmat.2019.01.009
Google Scholar
[19]
F.Z. Qing, R.T. Jia, B.W. Li, C.L. Liu, C.Z. Li, B. Peng, L.J. Deng, W.L. Zhang, Y.R. Li, R.S. Ruoff, X.S. Li, Graphene growth with no, feedstock, 2D Mater. 4(2) (2017) 025089.
DOI: 10.1088/2053-1583/aa6da5
Google Scholar
[20]
J.M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M.G. Spencer, Measurement of ultrafast carrier dynamics in epitaxial graphene, Appl. Phys. Lett. 92(4) (2008) 042116.
DOI: 10.1063/1.2837539
Google Scholar
[21]
M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon 48(5) (2010) 1592-1597.
DOI: 10.1016/j.carbon.2009.12.057
Google Scholar
[22]
C.-C. Lu, Y.-C. Lin, Z. Liu, C.-H. Yeh, K. Suenaga, P.-W. Chiu, Twisting bilayer graphene superlattices, ACS Nano 7(3) (2013) 2587-2594.
DOI: 10.1021/nn3059828
Google Scholar