Hybrid Reinforced Aluminium Composites Using Reduced Graphene Oxide Fabricated via Powder Metallurgy Technique

Article Preview

Abstract:

Recently, carbonaceous materials, such as graphene, have proven to be promising additives that show considerable improvements in mechanical and tribological properties of aluminium-based composites. In this present investigation, novel aluminium based hybrid composite specimens of various RGO and Al2O3 contents are prepared using powder metallurgy technique. The composite specimens have been tested in wear and microhardness. The results show that the hybrid composite containing 0.3 wt.% RGO-5 wt.% Al2O3 experiences the highest wear resistance with a hardness of about 76 HV among the tested composite specimens. The improvement in properties in the optimized hybrid composite was found to be much higher when compared to hybrid Aluminium Composites in literature fabricated using other techniques.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1059)

Pages:

97-101

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Suthar and K.M. Patel 2018: Mater. Manuf. Vol. 33 (2018), pp.499-527.

Google Scholar

[2] L.A. Yolshina, V.R. Muradymov, I.D. Vichuzhanin and O.E. Smirnova: AIP Conf. Proc. Vol. 1785 (2016).

Google Scholar

[3] Y. Huang, Q. Ouyang, D. Zhang, J. Zhu, R. Li and H. Yu: ACTA METALL. SIN. Vol. 27 (2014), pp.775-786.

Google Scholar

[4] M. Mansoor and M. Shahid: J. Appl. Res. Technol. Vol. 144 (2016), pp.215-224.

Google Scholar

[5] A.I. Evdokimov, A.T. Chernyshova, I.G. Pivovarov, A.P. Bykov, A.L. Ivanov and E.V. Vaganov: Inorg. Mater. Appl. Res. Vol. 5 (2014), pp.255-262.

DOI: 10.1134/s2075113314030071

Google Scholar

[6] Z. Zheng, X. Zhang, J. Li and L. Geng: Sci. China Technol. Sci. Vol. 63 (2020), pp.1426-1435.

Google Scholar

[7] M. Tabandeh-Khorshid, E. Omrani, L.P. Menezes and K.P. Rohatgi: Eng. Sci. Technol. Vol. 19 (2016) 1, pp.463-469.

Google Scholar

[8] M. Rashad, F. Pan, A. Tang and M. Asif: Prog. Nat. Sci. Vol. 24 (2014), pp.101-108.

Google Scholar

[9] V. Khanna, V. Kumar and A.S. Bansal: Mater. Res. Bull. Vol. 138 (2021).

Google Scholar

[10] Hm. Xia, L. Zhang, Yc. Zhu, Na. Li, Yu-qi. Sun, Jd. Zhang and Hz. Ma: Int. J. Miner. Metall. Mater. Vol. 27 (2020), p.1295–1300.

Google Scholar

[11] R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel and R. Martínez-Sánchez: J. Alloys Compd. Vol. 615 (2014), p. S578-S582.

DOI: 10.1016/j.jallcom.2014.01.225

Google Scholar

[12] W. Zhai, X. Shi, J. Yao, A.M.M. Ibrahim, Z. Xu, Q. Zhu, Y. Xiao, L. Chen and Q. Zhang: Compos. B. Eng Vol. 70 (2015), pp.149-155.

Google Scholar

[13] L. Yolshina, R. Muradymov, A. Kvashnichev, D. Vichuzhanin, N. Molchanova and A. Pankratov: Russ. Metall. (Met.).Vol. 2017 (2017), pp.631-641.

DOI: 10.1134/s0036029517080031

Google Scholar

[14] P. Harish, S. Siddiq, V. Srikanth, K.B. Reddy and C.K. Kumar: J. Appl. Eng. Sci. Vol. 4 (2019), pp.79-87.

Google Scholar

[15] ASTM E384 – 17 2017, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA.

Google Scholar

[16] ASTM G77-17 2017, Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test, ASTM International, West Conshohocken, PA.

DOI: 10.1520/g0077-05r10

Google Scholar

[17] S. Singh, G. Singh, L. Kumar and S. Singh: P I MECH ENG J-J ENG Vol. 229 (2015), p.597–608.

Google Scholar

[18] P. Ma, Y. Jia, P.K. Gokuldoss, Z. Yu, S. Yang, J. Zhao and C. Li: J. Met. Vol. 7 (2017).

Google Scholar

[19] D. Koli, G. Agnihotri and R. Purohit: Int. j. latest trends eng. Vol. 2 (2013), pp.486-496.

Google Scholar

[20] M.A. Daha, B.G. Nassef and M.G.A. Nassef: J. Mater. Eng. Perform. Vol. 30 (2021), p.2473–2481.

Google Scholar