Network Relaxation and Cooperativity in Ion Conducting Polymers PEO-Li: An Analysis Based on the BSCNF Model

Article Preview

Abstract:

The understanding of fundamental materials properties is indispensable for the development of functional materials. Some years ago, it has been reported that the fragility in poly (ethylene oxide)-based Li+ ion conductors decreases with the Li+ ion content. The behavior was considered as unexpected and the origin unclear. In the present study, it is shown that the Bond Strength-Coordination Number Fluctuation (BSCNF) model of structural relaxation developed by the present authors provides an explanation to the observed behavior. The analysis based on the BSCNF model indicates that the cooperativity, or the number of correlated structural units involved in the network relaxation decreases with the Li+ ion content.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1059)

Pages:

129-134

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. B. Aziz, T. J. Woo, M. F. Z. Kadir, H. M. Ahmed, J. Sci.: Adv. Mater. Devices 3 (2018) 1-17.

Google Scholar

[2] K. S. Ngai, S. Ramesh, K. Ramesh, J. C. Juan, Ionics 22 (2016) 1259-1279.

DOI: 10.1007/s11581-016-1756-4

Google Scholar

[3] P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu, X. Liu, Front. Chem. 7 (2019) 522.

Google Scholar

[4] V. At Nguyen, C. Kuss, J. Electrochem. Soc. 167 (2020) 065501.

Google Scholar

[5] E. Kartini, C. T. Genardy, IOP Conf. Ser.: Mater. Sci. Eng. 924 (2020) 012038.

DOI: 10.1088/1757-899x/924/1/012038

Google Scholar

[6] D. S. Sanditov, M. I. Ojovan, Physica B 523 (2017) 96-113.

Google Scholar

[7] Q. Zheng, J. C. Mauro: J. Amer. Ceram. Soc. 100 (2017) 6-25.

Google Scholar

[8] P. Koštál, J. Shánělová, J. Málek: Intern. Mater. Rev. 65 (2020) 63-101.

Google Scholar

[9] J. C. Qiao, Q. Wang, J. M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.

DOI: 10.1016/j.pmatsci.2019.04.005

Google Scholar

[10] M. Aniya, J. Therm. Anal. Cal. 69 (2002) 971-978.

Google Scholar

[11] M. Ikeda, M. Aniya, J. Non-Cryst. Solids 371-372 (2013) 53-57.

Google Scholar

[12] M. Aniya, M. Ikeda, Ionics 16 (2010) 7-11.

Google Scholar

[13] M. Ikeda, M. Aniya, J. Phys. Soc. Jpn. 79 (2010) Suppl. A, 150-153.

Google Scholar

[14] Sahara, M. Aniya, J. Solid State Electrochem. 16 (2012) 1883-1887.

Google Scholar

[15] M. Aniya, M. Ikeda, Sahara, J. L. Ndeugueu, Arab. J. Sci. Eng. 39 (2014) 6627-6633.

Google Scholar

[16] M. Ikeda, M. Aniya, Materials 3 (2010) 5246-5262.

Google Scholar

[17] D. Fragiadakis, S. Dou, R. H. Colby, J. Runt, J. Chem. Phys. 130 (2009) 064907.

Google Scholar

[18] R. Böhmer, K. L. Ngai, C. A. Angell, D. J. Plazek, J. Chem. Phys. 99 (1993) 4201-4209.

Google Scholar

[19] C. M. Roland, Macromol. 27 (1994) 4242-4247.

Google Scholar

[20] J. K. W. Glatz-Reichenbach, L. J. Sorriero, J. J. Fitzgerald, Macromol. 27 (1994) 1338-1343.

Google Scholar

[21] J. Cruickshank, H. V. St. A. Hubbard, N. Boden, I. M. Ward, Polymer 36 (1995) 3779-3781.

Google Scholar

[22] M Aniya, T. Shinkawa, Mater. Trans. 48 (2007) 1793-1796.

Google Scholar

[23] M. Ikeda, M. Aniya, Intermet. 18 (2010) 1796-1799.

Google Scholar

[24] M. Aniya, M. Ikeda, Phys. Procedia 48 (2013) 113-119.

Google Scholar

[25] A. G. M. Ferreira, A. P. V. Egas, I. M. A. Fonseca, A. C. Costa, D. C. Abreu, L. Q. Lobo, J. Chem. Thermodyn. 113 (2017) 162-182.

Google Scholar

[26] M. Aniya, M. Ikeda, Sahara, Mater. Sci. Forum 879 (2017) 151-156.

Google Scholar