[1]
A. Kryukov, L. Debarberis, U. Estorff, et al., Irradiation brittlenessof reactor pressure vessel steel at very high neutron fluence, J. Nucl. Mater. 422 (2012) 173-177.
DOI: 10.1016/j.jnucmat.2011.12.026
Google Scholar
[2]
M. Wan, G. Shu, R. Wang, et al., Study of the microstructure evoluiton of A508-3 steel under proton irradiation, Acta Metallurgica Sinica, 48 (2012) 929-934. (In Chinese).
DOI: 10.3724/sp.j.1037.2012.00060
Google Scholar
[3]
W. Yang, Summary of irradiation effects for the reactor pressure vessel steel of PWR, Nuclear safety, 3 (2012) 1-11. (In Chinese).
Google Scholar
[4]
Y. Lin, C. Zhang, C. Ning, et al. Irradiation property of pressure vessel materials in China, Materials China, 05 (2011) 7-10. (In Chinese).
Google Scholar
[5]
G. Adjanor, S. Bugat, C. Domain, et al. Overview of the RPV-2 and INTERN-1 packages: From primary damage to microplasticity, J. Nucl. Mater. 406 (2010) 175-186.
DOI: 10.1016/j.jnucmat.2009.09.006
Google Scholar
[6]
L. Cao, S. Wu, B. Liu, On the Cu precipitation behavior in thermo-mechanically brittlenessprocessed low copper reactor pressure vessel model steel, Mater. Design, 47 (2013) 551–556.
DOI: 10.1016/j.matdes.2012.12.055
Google Scholar
[7]
M. Lambrecht, E. Meslin, L. Malerba, et al., On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels, J. Nucl. Mater. 406 (2010) 84-89.
DOI: 10.1016/j.jnucmat.2010.05.020
Google Scholar
[8]
P. Liu, Q. Zhan, M. Zhao, et al. Microstructure changes of reduced activition steel after deuterium ion irradiation at high temperature, Journal of Functional Materials, 23 (2014) 23070-23074.
Google Scholar
[9]
H. Huang, R. Bartrand, P. Philippe, Reactor pressure vessel steels:influence of chemical composition and neutron irradiation conditions on irradiation damage, Materials Reports, 27 (2013) 106-112. (In Chinese).
Google Scholar
[10]
R. Wang, C. Xu, P. Huang, et al., Summaries of neutron fluence rate effects on har dening and brittlenessof nuclear reactor pressure vessel steels, Science and Technology Review, 32 (2014) 80-84. (In Chinese).
Google Scholar
[11]
R. Wang, C. Xu, X. Liu, et al., Influence factors of nuclear power plant reactor pressure vessel on irradiation embirttlement, China Metallurgy, 24 (2014) 1-5. (In Chinese).
Google Scholar
[12]
P. Pareige, R.E. Stoller, K.F. Russell, et al., Atom probe characterization of the microstructure of nuclear pressure vessel surveillance materials after neutron irradiation and after annealing treatments, J. Nucl. Mater. 249 (1997) 10.
DOI: 10.1016/s0022-3115(97)00215-8
Google Scholar
[13]
L. Debarberis, B. Acosta, A. Zeman, et al., Analysis of WWER-440 and PWR RPV welds surveillance data to compare irradiation damage evolution, J. Nucl. Mater. 350 (2006) 9.
DOI: 10.1016/j.jnucmat.2006.01.003
Google Scholar
[14]
Y. Peng, W. Zhu, H. Tang, et al. Study on microscopic of RPV weld material EG-F2N steel after irradiation with inmpact adnormal data, Nuclear Power Engineering, s1 (2017) 136-139. (In Chinese).
Google Scholar
[15]
E. Smith. The nucleation and growth of cleavage microcracks in mild steel. Proceedings of Conference on Physical Basis of Yield and Fracture. London: Institute of Physics and Physical Society, (1996).
Google Scholar
[16]
J. Chen, R. Cao, Micromechanism of cleavage fracture of weld matals, Acta Metallurgica Sinica, 53 (2017) 1427-1444. (In Chinese).
Google Scholar
[17]
C. Yan, J. Chen. An investigation into the micro-criterion of cleavage fracture, Journal of Gansu University of Technology, 03 (1993) 8-13. (In Chinese).
Google Scholar
[18]
G. Wang, J. Chen, J. Wang, On the measurement and physical meaning of the cleavage fracture stress in steel, PTCA(Part A: physical testing), 10 (2002) 420-423+437. (In Chinese).
Google Scholar
[19]
J. Li, R. Cao, G. Mao, et al., Intrinsic mechanisms of ductile-brittle transition for F460 steel welding coarse grained heat affected zones with different heat inputs, Journal of Materials Engneering, 44 (2016): 70-76. (In Chinese).
Google Scholar
[20]
G. Wang, J. Wang, J. Chen, Effects of specimen sizes on the local cleavagefracture stress of steel, Journal of Mechanical Strength, 25 (2003) 552-555. (In Chinese).
Google Scholar
[21]
G. Wang , Y. Wang , F. Xuan , et al., Effects of loading rate,notch geometry and loading mode on the cleavage fracture behavior of 16mnr steeL, Acta metallurgica sinica, 45 (2009) 866-872. (In Chinese).
Google Scholar
[22]
G. Wang, J. Chen, Effects of sizes of carbide particles on fracture behavior of notched specimens, Journal of Gansu University of Technology, 1 (1997) 1-6. (In Chinese).
Google Scholar
[23]
D. Wang, X. Li, J. Wei, et al., Effect of tempering temperature on fracture toughness of high carbon steel, Journal of Iron and Steel Research, 29 (2017) 494-499. (In Chinese).
Google Scholar
[24]
J.R. Chen, R. Cao. Micromechanism of cleavage fracture of metals, Elsevier, (2014).
Google Scholar
[25]
H. Ma, J. Chen, L. Zhu, Spherical non-metallic inclusion and fractures of weld matals, Journal of Gansu University of Technology, 02 (1993) 1-6. (In Chinese).
Google Scholar
[26]
Y. Sun, Q. Yu, Cleavage fracture mechanics and micromorphology analysis of low carbon steel, Journal of Kunming University of Science and Technology (Nature Science Edition), 36 (2011) 18-22. (In Chinese).
Google Scholar